PSP Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma



AuthorMozer, F.; Agapitov, O.; Bale, S.; Bonnell, J.; Case, T.; Chaston, C.; Curtis, D.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Krasnoselskikh, V.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; Wygant, J.;
KeywordsParker Data Used; parker solar probe; Solar Probe Plus
Abstract

Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks, and the dependence of the Poynting flux amplitude on the switchback radial location and rotation angle is explained quantitatively as being proportional to (B sin(θ))2. The solar wind flow inside switchbacks was faster than that outside due to the frozen-in ions moving with the magnetic structure at the Alfv\ en speed. This energy gain results from the divergence of the Poynting flux from outside to inside the switchback, which produces a loss of electromagnetic energy on switchback entry and recovery of that energy on exit, with the lost energy appearing in the plasma flow. Switchbacks contain 0.3-10 Hz waves that may result from currents and the Kelvin-Helmholtz instability that occurs at the switchback boundaries. These waves may combine with lower frequency magnetohydrodynamic waves to heat the plasma.

Year of Publication2020
JournalThe Astrophysical Journal Supplement Series
Volume246
Number of Pages68
Section
Date Published02/2020
ISBN
URLhttps://iopscience.iop.org/article/10.3847/1538-4365/ab7196
DOI10.3847/1538-4365/ab7196