PSP Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Evolution of anisotropic turbulence in the fast and slow solar wind: Theory and Solar Orbiter measurements



AuthorAdhikari, L.; Zank, G.~P.; Zhao, L.; Telloni, D.; Horbury, T.~S.; Brien, H.; Evans, V.; Angelini, V.; Owen, C.~J.; Louarn, P.; Fedorov, A.;
KeywordsParker Data Used; Solar wind; turbulence
Abstract\ Aims: Solar Orbiter (SolO) was launched on February 9, 2020, allowing us to study the nature of turbulence in the inner heliopshere. We investigate the evolution of anisotropic turbulence in the fast and slow solar wind in the inner heliosphere using the nearly incompressible magnetohydrodynamic (NI MHD) turbulence model and SolO measurements. \ Methods: We calculated the two dimensional (2D) and the slab variances of the energy in forward and backward propagating modes, the fluctuating magnetic energy, the fluctuating kinetic energy, the normalized residual energy, and the normalized cross-helicity as a function of the angle between the mean solar wind speed and the mean magnetic field (\ensuremath\theta$_UB$), and as a function of the heliocentric distance using SolO measurements. We compared the observed results and the theoretical results of the NI MHD turbulence model as a function of the heliocentric distance. \ Results: The results show that the ratio of 2D energy and slab energy of forward and backward propagating modes, magnetic field fluctuations, and kinetic energy fluctuations increases as the angle between the mean solar wind flow and the mean magnetic field increases from \ensuremath\theta$_UB$ = 0\textdegree to approximately \ensuremath\theta$_UB$ = 90\textdegree and then decreases as \ensuremath\theta$_UB$ \textrightarrow 180\textdegree. We find that solar wind turbulence is a superposition of the dominant 2D component and a minority slab component as a function of the heliocentric distance. We find excellent agreement between the theoretical results and observed results as a function of the heliocentric distance.
Year of Publication2021
Journal\aap
Volume656
Number of PagesA6
Section
Date Publisheddec
ISBN
URL
DOI10.1051/0004-6361/202140672