PSP Bibliography


  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Domains of Magnetic Pressure Balance in Parker Solar Probe Observations of the Solar Wind

AuthorRuffolo, David; Ngampoopun, Nawin; Bhora, Yash; Thepthong, Panisara; Pongkitiwanichakul, Peera; Matthaeus, William; Chhiber, Rohit;
KeywordsParker Data Used; 1534; 830; 1544; 824; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics
AbstractThe Parker Solar Probe (PSP) spacecraft is performing the first in situ exploration of the solar wind within 0.2 au of the Sun. Initial observations confirmed the Alfv\ enic nature of aligned fluctuations of the magnetic field B and velocity V in solar wind plasma close to the Sun, in domains of nearly constant magnetic field magnitude \ensuremath\mid B \ensuremath\mid, i.e., approximate magnetic pressure balance. Such domains are interrupted by particularly strong fluctuations, including but not limited to radial field (polarity) reversals, known as switchbacks. It has been proposed that nonlinear Kelvin-Helmholtz instabilities form near magnetic boundaries in the nascent solar wind leading to extensive shear- driven dynamics, strong turbulent fluctuations including switchbacks, and mixing layers that involve domains of approximate magnetic pressure balance. In this work we identify and analyze various aspects of such domains using data from the first five PSP solar encounters. The filling fraction of domains, a measure of Alfv\ enicity, varies from median values of 90\% within 0.2 au to 38\% outside 0.9 au, with strong fluctuations. We find an inverse association between the mean domain duration and plasma \ensuremath\beta. We examine whether the mean domain duration is also related to the crossing time of spatial structures frozen into the solar wind flow for extreme cases of the aspect ratio. Our results are inconsistent with long, thin domains aligned along the radial or Parker spiral direction, and compatible with isotropic domains, which is consistent with prior observations of isotropic density fluctuations or flocculae in the solar wind.
Year of Publication2021
Number of Pages158
Date Publisheddec