PSP Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Switchbacks: statistical properties and deviations from Alfvénicity



AuthorLarosa, A.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Froment, C.; Jagarlamudi, V.; Velli, M.; Bale, S.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Stevens, M.;
KeywordsSolar wind; magnetic fields; waves; magnetohydrodynamics (MHD); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used
AbstractContext. Parker Solar Probe s first solar encounter has revealed the presence of sudden magnetic field deflections in the slow Alfvénic solar wind. These structures, which are often called switchbacks, are associated with proton velocity enhancements.
Aims: We study their statistical properties with a special focus on their boundaries.
Methods: Using data from SWEAP and FIELDS, we investigate particle and wavefield properties. The magnetic boundaries are analyzed with the minimum variance technique.
Results: Switchbacks are found to be Alfvénic in 73% of cases and compressible in 27%. The correlations between magnetic field magnitude and density fluctuations reveal the existence of both positive and negative correlations, and the absence of perturbations in the magnetic field magnitude. Switchbacks do not lead to a magnetic shear in the ambient field. Their boundaries can be interpreted in terms of rotational or tangential discontinuities. The former are more frequent.
Conclusions: Our findings provide constraints on the possible generation mechanisms of switchbacks, which have to be able to also account for structures that are not purely Alfvénic. One of the possible candidates, among others, manifesting the described characteristics is the firehose instability.
Year of Publication2021
JournalAstronomy and Astrophysics
Volume650
Number of PagesA3
Section
Date Published06/2021
ISBN
URLhttps://ui.adsabs.harvard.edu/abs/2021A&A...650A...3L
DOI10.1051/0004-6361/202039442