PSP Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREO A



AuthorAllen, R.; Ho, G.; Mason, G.; Li, G.; Jian, L.; Vines, S.; Schwadron, N.; Joyce, C.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; Cohen, C.; Desai, M.; Filwett, R.; Goetz, K.; Harvey, P.; Hill, M.; Kasper, J.; Korreck, K.; Lario, D.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; McComas, D.; McNutt, R.; Mitchell, D.; Paulson, K.; Pulupa, M.; Raouafi, N.; Stevens, M.; Whittlesey, P.; Wiedenbeck, M.;
KeywordsParker Data Used; CIRs; parker solar probe; Solar wind; STEREO; suprathermal ions
AbstractThe addition of Parker Solar Probe (PSP) to the Heliophysics System Observatory has allowed for the unprecedented ability to study Corotating Interaction Regions (CIRs) at multiple radial distances without significant temporal/longitudinal variations. On September 19, 2019, PSP observed a CIR at ∼0.5 au when it was nearly radially aligned with the Solar Terrestrial Relations Observatory Ahead (STEREO A) spacecraft at ∼1 au, allowing for an unambiguous assessment of the radial evolution of a single CIR. Bulk plasma and magnetic field signatures of the CIR evolve in a fashion characteristic to previous observations; however, the suprathermal ions are enhanced over a larger longitudinal range at PSP than at STEREO A, although at much lower intensities. The longitudinal spread appears to be largely a consequence of magnetic field line topology at CIRs between the compressed slow solar wind upstream and high speed stream following the CIR, underscoring the importance of the large scale topology of these structures.
Year of Publication2021
JournalGeophysical Research Letters
Volume48
Number of Pagese91376
Section
Date Published02/2021
ISBN
URLhttps://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020GL091376
DOI10.1029/2020GL091376