PSP Bibliography


  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Evidence of Subproton-Scale Magnetic Holes in the Venusian Magnetosheath

AuthorGoodrich, Katherine; Bonnell, John; Curry, Shannon; Livi, Roberto; Whittlesey, Phyllis; Mozer, Forrest; Malaspina, David; Halekas, Jasper; McManus, Michael; Bale, Stuart; Bowen, Trevor; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Larson, Davin; MacDowall, Robert; Pulupa, Marc; Stevens, Michael;
KeywordsParker Data Used; parker solar probe
AbstractAbstract Depressions in magnetic field strength, commonly referred to as magnetic holes, are observed ubiquitously in space plasmas. Subproton-scale magnetic holes with spatial scales smaller than or on the order of a proton gyroradius, are likely supported by electron current vortices, rotating perpendicular to the ambient magnetic field. While there are numerous accounts of subproton-scale magnetic holes within the Earth’s magnetosphere, there are few, if any, reported observations in other space plasma environments. We present the first evidence of subproton-scale magnetic holes in the Venusian magnetosheath. During Parker Solar Probe’s first Venus Gravity Assist, the spacecraft crossed the planet’s bow shock and subsequently observed the Venusian magnetosheath. The FIELDS instrument suite onboard the spacecraft achieved magnetic and electric field measurements of magnetic hole structures. The electric fields associated with magnetic depressions are consistent with electron current vortices with amplitudes on the order of 1 μA/m2.
Year of Publication2021
JournalGeophysical Research Letters
Number of Pagese2020GL090329
Date Published