PSP Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Technology development for the Solar Probe Plus Faraday Cup



AuthorFreeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;
KeywordsParker Data Used
AbstractThe upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly exposed to the solar disk, where at closest approach to the Sun (less than 10 solar radii (R-s) from the center of the Sun) the intensity is greater than 475 earth-suns. These challenges range from materials characterization at temperatures in excess of 1400 degrees C to thermal modeling of the behavior of the materials and their interactions at these temperatures. We discuss the trades that have resulted in the material selection for the current design of the Faraday Cup. Specific challenges include the material selection and mechanical design of insulators, particularly for the high-voltage (up to 8 kV) grid and coaxial supply line, and thermo-optical techniques to minimize temperatures in the SPC, with the specific intent of demonstrating Technology Readiness Level 6 by the end of 2013.
Year of Publication2013
Journal
Volume8862
Number of Pages
Section
Date Published
ISBN978-0-8194-9712-3
URL
DOI10.1117/12.2024983