PSP Bibliography


  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Magnetic increases with central current sheets: Observations with Parker Solar Probe

AuthorFargette, N.; Lavraud, B.; Rouillard, A.; Eastwood, J.; Bale, S.; Phan, T.; Oieroset, M.; Halekas, J.; Kasper, J.; Berthomier, M.; Case, A.; Korreck, K.; Larson, D.; Louarn, P.; Malaspina, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; al., et;
KeywordsParker Data Used; parker solar probe; Solar Probe Plus
Abstract\ Aims: We report the observation by Parker Solar Probe (PSP) of magnetic structures in the solar wind that present a strong peak in their magnetic field magnitude with an embedded central current sheet. Similar structures have been observed, either at the Earth s magnetopause and called interlinked flux tubes, or in the solar wind and called interplanetary field enhancements. \ Methods: In this work, we first investigate two striking events in detail; one occurred in the regular slow solar wind on November 2, 2018 and the other was observed during a heliospheric current sheet crossing on November 13, 2018. They both show the presence of a central current sheet with a visible ion jet and general characteristics consistent with the occurrence of magnetic reconnection. We then performed a survey of PSP data from encounters 1 to 4 and find 18 additional events presenting an increase in the magnetic field magnitude of over 30\% and a central current sheet. We performed a statistical study on the 20 magnetic increases with central current sheet (MICCS), with 13 observed in the regular slow solar wind with a constant polarity (i.e., identical strahl direction), and 7 which were specifically observed near a heliospheric current sheet crossing. \ Results: We analyze and discuss the general properties of the structures, including the duration, location, amplitude, and magnetic topology, as well as the characteristics of their central current sheet. We find that the latter has a preferential orientation in the TN plane of the RTN frame. We also find no significant change in the dust impact rate in the vicinity of the MICCS under study, leading us to conclude that dust probably plays no role in the MICCS formation and evolution. Our findings are overall consistent with a double flux tube-configuration that would result from initially distinct flux tubes which interact during solar wind propagation.
Year of Publication2020
JournalAstronomy and Astrophysics
Number of PagesA11
Date Publishedjun