PSP Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind



AuthorRĂ©ville, Victor; Velli, Marco; Rouillard, Alexis; Lavraud, Benoit; Tenerani, Anna; Shi, Chen; Strugarek, Antoine;
KeywordsAstrophysics - Solar and Stellar Astrophysics; Magnetohydrodynamics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Slow solar wind; Solar magnetic reconnection; Solar Probe Plus; Solar wind
Abstract

In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements\textemdashakin to what is observed in closed coronal loops\textemdashthe slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the WISPR white-light imager on board Parker Solar Probe (PSP). In this work, we propose that the main mechanism controlling the release of flux ropes is a flow-modified tearing mode at the heliospheric current sheet (HCS). We use magnetohydrodynamic simulations of the solar wind and corona to reproduce realistic configurations and outflows surrounding the HCS. We find that this process is able to explain long (\~10-20 hr) and short (\~1-2 hr) timescales of density structures observed in the slow solar wind. This study also sheds new light on the structure, topology, and composition of the slow solar wind, and could be, in the near future, compared with white light and in situ PSP observations.

Year of Publication2020
JournalThe Astrophysical Journal
Volume895
Number of PagesL20
Section
Date Published05/2020
ISBN
URLhttps://iopscience.iop.org/article/10.3847/2041-8213/ab911d
DOI10.3847/2041-8213/ab911d