PSP Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Exploring Solar Wind Origins and Connecting Plasma Flows from the Parker Solar Probe to 1 au: Nonspherical Source Surface and Alfv\ enic Fluctuations



AuthorPanasenco, Olga; Velli, Marco; D\textquoterightAmicis, Raffaella; Shi, Chen; eville, Victor; Bale, Stuart; Badman, Samuel; Kasper, Justin; Korreck, Kelly; Bonnell, J.; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Case, Anthony; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis;
KeywordsParker Data Used; parker solar probe; Solar Probe Plus
Abstract

The magnetic field measurements of the FIELDS instrument on the Parker Solar Probe (PSP) have shown intensities, throughout its first solar encounter, that require a very low source surface (SS) height ( R\ SS\ ⩽1.8R\ ⊙\ \ RSS⩽1.8R⊙ ) to be reconciled with magnetic field measurements at the Sun via potential field extrapolation (PFSS). However, during PSP\textquoterights second encounter, the situation went back to a more classic SS height ( R\ SS\ ⩽2.5R\ ⊙\ \ RSS⩽2.5R⊙ ). Here we use high-resolution observations of the photospheric magnetic field (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) to calculate neutral lines and boundaries of the open field regions for SS heights from 1.2 to 2.5 R using an evolving PFSS model and the measured solar wind speed to trace the source of the wind observed by PSP to the low corona and photosphere. We adjust RSS to get the best match for the field polarity over the period 2018 October-November and 2019 March-April, finding that the best fit for the observed magnetic field polarity inversions requires a nonspherical SS. The geometry of the coronal hole boundaries for different RSS is tested using the PSP perihelion passes, 3D PFSS models, and LASCO/C2 observations. We investigate the sources of stronger-than-average magnetic fields and times of Alfv\ enic fast and slow wind. Only some of the strongly Alfv\ enic slow wind streams seen by PSP survive and are observed at 1 au: the origins and peculiar topology of the background in which they propagate is discussed.

Year of Publication2020
JournalThe Astrophysical Journal Supplement Series
Volume246
Number of Pages54
Section
Date Published02/2020
ISBN
URLhttps://iopscience.iop.org/article/10.3847/1538-4365/ab61f4
DOI10.3847/1538-4365/ab61f4