PSP Bibliography


  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Switchbacks in the Young Solar Wind: Electron Evolution Observed inside Switchbacks between 0.125 au and 0.25 au

AuthorNair, Raaman; Halekas, Jasper; Whittlesey, Phyllis; Larson, Davin; Livi, Roberto; Berthomier, Matthieu; Kasper, Justin; Case, Anthony; Stevens, Michael; Bale, Stuart; MacDowall, Robert; Pulupa, Marc;
KeywordsParker Data Used; Solar wind; Space plasmas; Solar corona; Solar magnetic fields; Solar Physics; 1534; 1544; 1483; 1503; 1476
AbstractSwitchbacks are localized deviations from the nominal Parker spiral field in the solar wind. In this study, we investigate the electron distributions inside switchbacks, focusing primarily on the suprathermal (halo and strahl) populations. We explore electron parameters in relation to the angle of rotation of the magnetic field from radial to determine whether electron distributions observed within switchbacks have any differences from those outside of switchbacks. Our observations reveal several trends in the suprathermal electron populations inside switchbacks. We find that the sunward deficit in the electron velocity distribution function typically observed near the Sun is filled in at larger rotation angles. This results in the suprathermal electron density and heat flux in the antistrahl direction changing from a negative to a positive value. On many days, we also observe a positive correlation between the halo density and rotation angle, and this may suggest that the growth of the halo may fill in the sunward deficit. We also find that strahl distributions have an increased average angular spread at large magnetic field rotation angles. The increase in suprathermal electron flux in the antistrahl direction, and the increase in strahl width, together could suggest that enhanced scattering occurs inside switchbacks. Electron core beta values tend to increase with the magnetic field rotation angle, mainly due to a decrease in magnetic pressure. An increase in electron beta may favor the growth of instabilities inside switchbacks. The Parker Solar Probe observations therefore support an enhanced role for wave-particle interactions in switchbacks.
Year of Publication2022
Number of Pages164
Date Publishedsep