PSP Bibliography


  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Strategies for Determining the Cascade Rate in MHD Turbulence: Isotropy, Anisotropy, and Spacecraft Sampling

AuthorWang, Yanwen; Chhiber, Rohit; Adhikari, Subash; Yang, Yan; Bandyopadhyay, Riddhi; Shay, Michael; Oughton, Sean; Matthaeus, William; Cuesta, Manuel;
KeywordsParker Data Used; interplanetary turbulence; Space plasmas; Plasma physics; Magnetohydrodynamics; Magnetohydrodynamical simulations; 830; 1544; 2089; 1964; 1966; Physics - Space Physics; Physics - Fluid Dynamics; Physics - Plasma Physics
AbstractExact laws for evaluating cascade rates, tracing back to the Kolmogorov 4/5 law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom) relations is most effectively accomplished by examining the von K\ arm\ an-Howarth equation in increment form, a framework from which the third-order laws are derived as asymptotic approximations. Using this approach, we examine the context of third-order laws for incompressible MHD in some detail. The simplest versions rely on the assumption of isotropy and the presence of a well-defined inertial range, while related procedures generalize the same idea to arbitrary rotational symmetries. Conditions for obtaining correct and accurate values of the dissipation rate from these laws based on several sampling and fitting strategies are investigated using results from simulations. The questions we address are of particular relevance to sampling of solar wind turbulence by one or more spacecraft.
Year of Publication2022
Number of Pages76
Date Publishedoct