PSP Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





The Digital Fields Board for the FIELDS instrument suite on the Solar Probe Plus mission: Analog and digital signal processing



AuthorMalaspina, David; Ergun, Robert; Bolton, Mary; Kien, Mark; Summers, David; Stevens, Ken; Yehle, Alan; Karlsson, Magnus; Hoxie, Vaughn; Bale, Stuart; Goetz, Keith;
Keywordselectric and magnetic fields; instrumentation; Parker Data Used; parker solar probe; signal processing; solar probe; Solar Probe Plus; Solar wind
Abstract

The first in situ measurements of electric and magnetic fields in the near-Sun environment (\< 0.25 AU from the Sun) will be made by the FIELDS instrument suite on the Solar Probe Plus mission. The Digital Fields Board (DFB) is an electronics board within FIELDS that performs analog and digital signal processing, as well as digitization, for signals between DC and 60 kHz from five voltage sensors and four search coil magnetometer channels. These nine input signals are processed on the DFB into 26 analog data streams. A specialized application-specific integrated circuit performs analog to digital conversion on all 26 analog channels simultaneously. The DFB then processes the digital data using a field programmable gate array (FPGA), generating a variety of data products, including digitally filtered continuous waveforms, high-rate burst capture waveforms, power spectra, cross spectra, band-pass filter data, and several ancillary products. While the data products are optimized for encounter-based mission operations, they are also highly configurable, a key design aspect for a mission of exploration. This paper describes the analog and digital signal processing used to ensure that the DFB produces high-quality science data, using minimal resources, in the challenging near-Sun environment.

Year of Publication2016
JournalJournal of Geophysical Research: Space Physics
Volume1211951361419819910441179117
Number of Pages5088-5096
Section
Date Published06/2016
ISBN
URLhttp://doi.wiley.com/10.1002/2016JA022344
DOI10.1002/2016JA022344