PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 275 entries in the Bibliography.


Showing entries from 251 through 275


2014

INBOUND WAVES IN THE SOLAR CORONA: A DIRECT INDICATOR OF ALFV\ EN SURFACE LOCATION

The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary\textemdashthe Alfv\ en surface\textemdashthat marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfv\ en surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfv\ en speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar co ...

Deforest, C.; Howard, T.; McComas, D.;

Published by: The Astrophysical Journal      Published on: 06/2014

YEAR: 2014     DOI: 10.1088/0004-637X/787/2/124

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: fundamental parameters; techniques: image processing

Complexity and Diffusion of Magnetic Flux Surfaces in Anisotropic Turbulence

Servidio, S.; Matthaeus, W.~H.; Wan, M.; Ruffolo, D.; Rappazzo, A.~F.; Oughton, S.;

Published by: \apj      Published on: 04/2014

YEAR: 2014     DOI: 10.1088/0004-637X/785/1/56

Parker Data Used; ISM: magnetic fields; magnetic fields; magnetic reconnection; magnetohydrodynamics: MHD; Solar wind; Sun: magnetic fields

Validating a Time-dependent Turbulence-driven Model of the Solar Wind

Lionello, Roberto; Velli, Marco; Downs, Cooper; Linker, Jon; c, Zoran; Verdini, Andrea;

Published by: \apj      Published on: 04/2014

YEAR: 2014     DOI: 10.1088/0004-637X/784/2/120

Parker Data Used; magnetohydrodynamics: MHD; Solar wind; turbulence; waves; Astrophysics - Solar and Stellar Astrophysics

Coronal electron temperature in the protracted solar minimum, the cycle 24 mini maximum, and over centuries

Schwadron, N.~A.; Goelzer, M.~L.; Smith, C.~W.; Kasper, J.~C.; Korreck, K.; Leamon, R.~J.; Lepri, S.~T.; Maruca, B.~A.; McComas, D.; Steven, M.~L.;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019397

Parker Data Used; Solar wind

Proton Kinetic Effects in Vlasov and Solar Wind Turbulence

Servidio, S.; Osman, K.~T.; Valentini, F.; Perrone, D.; Califano, F.; Chapman, S.; Matthaeus, W.~H.; Veltri, P.;

Published by: \apjl      Published on: 02/2014

YEAR: 2014     DOI: 10.1088/2041-8205/781/2/L27

Parker Data Used; magnetic fields; plasmas; Solar wind; turbulence; Physics - Space Physics

An analysis of Alfv\ en radius based on sunspot number from 1749 to today

The Solar Probe Plus mission now under construction will provide the first in situ measurements from inside the orbit of Mercury. The most critical part of that mission will be measurements from inside the Alfv\ en radius where the Alfv\ en speed exceeds the wind speed and the physics of the solar wind changes fundamentally due, in part, to the multidirectionality of wave propagation. In this region waves from both sunward and antisunward of the observation point can effect the local dynamics including the turbulent evolu ...

Goelzer, Molly; Schwadron, Nathan; Smith, Charles;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013JA019420

interplanetary magnetic fields; parker solar probe; Solar Probe Plus; Solar wind; solar wind acceleration

2013

Squeezing of Particle Distributions by Expanding Magnetic Turbulence and Space Weather Variability

Ruffolo, D.; Seripienlert, A.; Tooprakai, P.; Chuychai, P.; Matthaeus, W.~H.;

Published by: \apj      Published on: 12/2013

YEAR: 2013     DOI: 10.1088/0004-637X/779/1/74

Parker Data Used; galaxies: jets; ISM: jets and outflows; magnetic fields; solar-terrestrial relations; Solar wind; turbulence

Stochastic Heating, Differential Flow, and the Alpha-to-proton Temperature Ratio in the Solar Wind

Chandran, B.~D.~G.; Verscharen, D.; Quataert, E.; Kasper, J.~C.; Isenberg, P.~A.; Bourouaine, S.;

Published by: \apj      Published on: 10/2013

YEAR: 2013     DOI: 10.1088/0004-637X/776/1/45

Parker Data Used; plasmas; Solar wind; Sun: corona; turbulence; waves; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Direct Numerical Simulations of Reflection-driven, Reduced Magnetohydrodynamic Turbulence from the Sun to the Alfv\ en Critical Point

Perez, Jean; Chandran, Benjamin;

Published by: \apj      Published on: 10/2013

YEAR: 2013     DOI: 10.1088/0004-637X/776/2/124

Parker Data Used; magnetohydrodynamics: MHD; Solar wind; Sun: corona; turbulence; waves

Association of Suprathermal Particles with Coherent Structures and Shocks

Tessein, J.~A.; Matthaeus, W.~H.; Wan, M.; Osman, K.~T.; Ruffolo, D.; Giacalone, J.;

Published by: \apjl      Published on: 10/2013

YEAR: 2013     DOI: 10.1088/2041-8205/776/1/L8

Parker Data Used; acceleration of particles; magnetohydrodynamics: MHD; plasmas; shock waves; Solar wind

SPIE ProceedingsSeeing the corona with the solar probe plus mission: the wide-field imager for solar probe+ (WISPR)

Vourlidas, Angelos; Howard, Russell; Plunkett, Simon; Korendyke, Clarence; Carter, Michael; Thernisien, Arnaud; Chua, Damien; Van Duyne, Peter; Socker, Dennis; Linton, Mark; Liewer, Paulett; Hall, Jeffrey; Morrill, Jeff; DeJong, Eric; Mikic, Zoran; Rochus, Pierre; Bothmer, Volker; Rodman, Jens; Lamy, Philippe;

Published by:       Published on: 09/2013

YEAR: 2013     DOI: 10.1117/12.2027508

Heliospheric imager; Imaging; Parker Data Used; Solar corona; Solar Probe Plus; Solar wind; Thomson scattering

Magnetic correlation functions in the slow and fast solar wind in the Eulerian reference frame

Weygand, James; Matthaeus, W.~H.; Kivelson, M.~G.; Dasso, S.;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 07/2013

YEAR: 2013     DOI: 10.1002/jgra.50398

Parker Data Used; turbulence; Solar wind; magnetic field; Eulerian frame; decorrelation

AIP Conference ProceedingsA view from the ground: Next generation instrumentation for solar and heliospheric physics

The solar and space physics community has recently completed its second decadal survey under the auspices of the National Research Council. An integrated strategy for ground and space based studies of the Sun and space physics has been recommended, with specific recommendations made regarding new instrumentation, programs, and facilities. The ground based component of these recommendations is briefly reviewed here: the Advanced Technology Solar Telescope (ATST), the Frequency Agile Solar Radiotelescope (FASR), and the Cor ...

Bastian, T.;

Published by:       Published on: 07/2013

YEAR: 2013     DOI: 10.1063/1.4811080

95.55.Cs; 95.55.Ev; 95.55.Jz; 95.75.Hi; astronomical polarimetry; Ground-based ultraviolet optical and infrared telescopes; parker solar probe; photosphere; radioastronomy; radiotelescopes; Solar instruments; Solar Probe Plus; Solar wind

AIP Conference ProceedingsTemperature anisotropy instabilities; combining plasma and magnetic field data at different distances from the Sun

We present a new data analysis method enabling the observation of magnetic field fluctuations associated with temperature anisotropy instabilities using the Ulysses spacecraft. The movement of the spacecraft away from the Sun causes the observed plasma conditions, turbulent fluctuation amplitude, magnetic field strength and important physical scales to change. We normalize wavelet power spectra of the magnetic field using local values for the proton gyroscale and large scale magnetic field fluctuation amplitude to remove ...

Wicks, Robert; Matteini, Lorenzo; Horbury, Timothy; Hellinger, Petr; Roberts, Aaron;

Published by:       Published on: 07/2013

YEAR: 2013     DOI: 10.1063/1.4811048

96.50.Ci; 96.60.Hv; 96.60.Tf; 96.60.Vg; astrophysical plasma; data analysis; parker solar probe; plasma instability; solar magnetism; Solar Probe Plus; solar spectra; Solar wind; Solar wind plasma; sources of solar wind; wavelet transforms

Evolution of the Solar Flare Energetic Electrons in the Inhomogeneous Inner Heliosphere

Solar flare accelerated electrons escaping into the interplanetary space and seen as type III solar radio bursts are often detected near the Earth. Using numerical simulations we consider the evolution of energetic electron spectrum in the inner heliosphere and near the Earth. The role of Langmuir wave generation, heliospheric plasma density fluctuations, and expansion of magnetic field lines on the electron peak flux and fluence spectra is studied to predict the electron properties as could be observed by Solar Orbiter a ...

Reid, Hamish; Kontar, Eduard;

Published by: Solar Physics      Published on: 07/2013

YEAR: 2013     DOI: 10.1007/s11207-012-0013-x

Astrophysics - Solar and Stellar Astrophysics; dynamics; Energetic particles; flares; parker solar probe; plasma; propagation; Radio bursts; Solar Probe Plus; Solar wind; type III; waves

Intermittent Heating in Solar Wind and Kinetic Simulations

Wu, P.; Perri, S.; Osman, K.; Wan, M.; Matthaeus, W.~H.; Shay, M.~A.; Goldstein, M.~L.; Karimabadi, H.; Chapman, S.;

Published by: \apjl      Published on: 02/2013

YEAR: 2013     DOI: 10.1088/2041-8205/763/2/L30

Parker Data Used; magnetohydrodynamics: MHD; Solar wind; Sun: corona; turbulence

Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas

Karimabadi, H.; Roytershteyn, V.; Wan, M.; Matthaeus, W.~H.; Daughton, W.; Wu, P.; Shay, M.; Loring, B.; Borovsky, J.; Leonardis, E.; Chapman, S.~C.; Nakamura, T.~K.~M.;

Published by: Physics of Plasmas      Published on: 01/2013

YEAR: 2013     DOI: 10.1063/1.4773205

Parker Data Used; astrophysical plasma; plasma Alfven waves; plasma kinetic theory; plasma simulation; plasma temperature; plasma transport processes; plasma turbulence; Solar wind; 52.35.Ra; 94.05.Lk; 94.05.Pt; 52.25.Dg; 52.25.Fi; 52.35.Bj; plasma turbulence; turbulence; Wave/wave wave/particle interactions; Plasma kinetic equations; Transport properties; Magnetohydrodynamic waves

Solar Probe Plus: A mission to touch the sun

Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. SPP uses an innovative mission design, significant technology development and a r ...

Kinnison, James; Lockwood, Mary; Fox, Nicola; Conde, Richard; Driesman, Andrew;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2013     DOI:

Commerce; magnetic fields; Solar wind; Parker Engineering

Technology development for the solar probe plus faraday cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2013     DOI:

plasmas; Solar wind; Parker Engineering

2012

Interchange Reconnection in a Turbulent Corona

Rappazzo, A.~F.; Matthaeus, W.~H.; Ruffolo, D.; Servidio, S.; Velli, M.;

Published by: \apjl      Published on: 10/2012

YEAR: 2012     DOI: 10.1088/2041-8205/758/1/L14

Parker Data Used; magnetic reconnection; magnetohydrodynamics: MHD; Solar wind; Sun: corona; Sun: magnetic topology; turbulence; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Short wavelength electromagnetic perturbations excited near the Solar Probe Plus spacecraft in the inner heliosphere: 2.5D hybrid modeling

A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was ...

Lipatov, Alexander; Sittler, Edward; Hartle, Richard; Cooper, John;

Published by: Planetary and Space Science      Published on: 03/2012

YEAR: 2012     DOI: 10.1016/j.pss.2011.12.008

Alfv\ en waves; Induced magnetospheres; Magnetic barrier; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Spacecraft; Whistlers

Solar probe plus mission definition

Solar Probe Plus will be the first mission to touch the Sun - To fly into the solar corona to study how the corona is heated and the solar wind is accelerated. Solving these two fundamental mysteries has been a top-priority science goal for over five decades. Thanks to an innovative design, emerging technology developments and completion of a successful Phase A, answers to these critical questions will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the ...

Lockwood, Mary; Kinnison, James; Fox, Nicola; Conde, Richard; Driesman, Andrew;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2012     DOI:

Carbon; Foams; Heating; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Remote sensing; Research laboratories; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering

2011

CORONAL PLUMES IN THE FAST SOLAR WIND

The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfv\ en waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of t ...

Velli, Marco; Lionello, Roberto; Linker, Jon; c, Zoran;

Published by: The Astrophysical Journal      Published on: 07/2011

YEAR: 2011     DOI: 10.1088/0004-637X/736/1/32

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Solar Probe Plus, mission update

Solar Probe Plus (SPP) will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top-priority science goals for over five decades. Thanks to an innovative design, emerging technology developments and a significant risk reducing engineering development program these critical goals will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building th ...

Morse, Brian; Kinnison, James; Lockwood, Mary; Reynolds, Edward; Fox, Nicola;

Published by: 62nd International Astronautical Congress 2011, IAC 2011      Published on:

YEAR: 2011     DOI:

Carbon; Heating; Instrument testing; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering

2010

Solar probe plus, a historic mission to the sun

Solar Probe Plus (SPP) will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top-priority science goals for decades. Thanks to an innovative design, emerging technology developments and a significant risk reducing engineering development program these critical goals will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the Solar Pr ...

Kinnison, James; Morse, Brian; Lockwood, Mary; Reynolds, Edward; Decker, Robert;

Published by: 61st International Astronautical Congress 2010, IAC 2010      Published on:

YEAR: 2010     DOI:

Carbon; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Solar cell arrays; Solar wind; Temperature; Parker Engineering



  1      2      3      4      5      6