PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 804 entries in the Bibliography.


Showing entries from 251 through 300


2021

MHD and Ion Kinetic Waves in Field-aligned Flows Observed by Parker Solar Probe

Parker Solar Probe (PSP) observed predominately Alfv\ enic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic- field-aligned solar wind flow intervals during PSP s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD sca ...

Zhao, L.; Zank, G.~P.; He, J.~S.; Telloni, D.; Adhikari, L.; Nakanotani, M.; Kasper, J.~C.; Bale, S.~D.;

Published by: \apj      Published on: dec

YEAR: 2021     DOI: 10.3847/1538-4357/ac28fb

Parker Data Used; 1534; 23; 830; 824

Solar energetic particle heavy ion properties in the widespread event of 2020 November 29

Context. Following a multi-year minimum of solar activity, a solar energetic particle event on 2020 Nov. 29 was observed by multiple spacecraft covering a wide range of solar longitudes including ACE, the Solar Terrestrial Relations Observatory-A, and the recently launched Parker Solar Probe and Solar Orbiter. \ Aims: Multi-point observations of a solar particle event, combined with remote-sensing imaging of flaring, shocks, and coronal mass ejections allows for a global picture of the event to be synthesized, and made avail ...

Mason, G.~M.; Cohen, C.~M.~S.; Ho, G.~C.; Mitchell, D.~G.; Allen, R.~C.; Hill, M.~E.; Andrews, G.~B.; Berger, L.; Boden, S.; Böttcher, S.; Cernuda, I.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Eldrum, S.; Elftmann, R.; Kollhoff, A.; Giacalone, J.; omez-Herrero, R.; Hayes, J.; Janitzek, N.~P.; Joyce, C.~J.; Korth, A.; Kühl, P.; Kulkarni, S.~R.; Labrador, A.~W.; Lara, Espinosa; Lees, W.~J.; Leske, R.~A.; Mall, U.; Martin, C.; in, Mart\; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, J.~G.; Pacheco, D.; Espada, Parra; Prieto, M.; Rankin, J.~S.; Ravanbakhsh, A.; iguez-Pacheco, Rodr\; Polo, Rodr\; Roelof, E.~C.; anchez-Prieto, S.; Schlemm, C.~E.; Schwadron, N.~A.; Seifert, H.; Stone, E.~C.; Szalay, J.~R.; Terasa, J.~C.; Tyagi, K.; von Forstner, J.~L.; Wiedenbeck, M.~E.; Wimmer-Schweingruber, R.~F.; Xu, Z.~G.; Yedla, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202141310

Parker Data Used; acceleration of particles; Sun: abundances; Sun: flares; Sun: particle emission

Solar energetic particle heavy ion properties in the widespread event of 2020 November 29

Context. Following a multi-year minimum of solar activity, a solar energetic particle event on 2020 Nov. 29 was observed by multiple spacecraft covering a wide range of solar longitudes including ACE, the Solar Terrestrial Relations Observatory-A, and the recently launched Parker Solar Probe and Solar Orbiter. \ Aims: Multi-point observations of a solar particle event, combined with remote-sensing imaging of flaring, shocks, and coronal mass ejections allows for a global picture of the event to be synthesized, and made avail ...

Mason, G.~M.; Cohen, C.~M.~S.; Ho, G.~C.; Mitchell, D.~G.; Allen, R.~C.; Hill, M.~E.; Andrews, G.~B.; Berger, L.; Boden, S.; Böttcher, S.; Cernuda, I.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Eldrum, S.; Elftmann, R.; Kollhoff, A.; Giacalone, J.; omez-Herrero, R.; Hayes, J.; Janitzek, N.~P.; Joyce, C.~J.; Korth, A.; Kühl, P.; Kulkarni, S.~R.; Labrador, A.~W.; Lara, Espinosa; Lees, W.~J.; Leske, R.~A.; Mall, U.; Martin, C.; in, Mart\; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, J.~G.; Pacheco, D.; Espada, Parra; Prieto, M.; Rankin, J.~S.; Ravanbakhsh, A.; iguez-Pacheco, Rodr\; Polo, Rodr\; Roelof, E.~C.; anchez-Prieto, S.; Schlemm, C.~E.; Schwadron, N.~A.; Seifert, H.; Stone, E.~C.; Szalay, J.~R.; Terasa, J.~C.; Tyagi, K.; von Forstner, J.~L.; Wiedenbeck, M.~E.; Wimmer-Schweingruber, R.~F.; Xu, Z.~G.; Yedla, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202141310

Parker Data Used; acceleration of particles; Sun: abundances; Sun: flares; Sun: particle emission

Solar energetic particle heavy ion properties in the widespread event of 2020 November 29

Context. Following a multi-year minimum of solar activity, a solar energetic particle event on 2020 Nov. 29 was observed by multiple spacecraft covering a wide range of solar longitudes including ACE, the Solar Terrestrial Relations Observatory-A, and the recently launched Parker Solar Probe and Solar Orbiter. \ Aims: Multi-point observations of a solar particle event, combined with remote-sensing imaging of flaring, shocks, and coronal mass ejections allows for a global picture of the event to be synthesized, and made avail ...

Mason, G.~M.; Cohen, C.~M.~S.; Ho, G.~C.; Mitchell, D.~G.; Allen, R.~C.; Hill, M.~E.; Andrews, G.~B.; Berger, L.; Boden, S.; Böttcher, S.; Cernuda, I.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Eldrum, S.; Elftmann, R.; Kollhoff, A.; Giacalone, J.; omez-Herrero, R.; Hayes, J.; Janitzek, N.~P.; Joyce, C.~J.; Korth, A.; Kühl, P.; Kulkarni, S.~R.; Labrador, A.~W.; Lara, Espinosa; Lees, W.~J.; Leske, R.~A.; Mall, U.; Martin, C.; in, Mart\; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, J.~G.; Pacheco, D.; Espada, Parra; Prieto, M.; Rankin, J.~S.; Ravanbakhsh, A.; iguez-Pacheco, Rodr\; Polo, Rodr\; Roelof, E.~C.; anchez-Prieto, S.; Schlemm, C.~E.; Schwadron, N.~A.; Seifert, H.; Stone, E.~C.; Szalay, J.~R.; Terasa, J.~C.; Tyagi, K.; von Forstner, J.~L.; Wiedenbeck, M.~E.; Wimmer-Schweingruber, R.~F.; Xu, Z.~G.; Yedla, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202141310

Parker Data Used; acceleration of particles; Sun: abundances; Sun: flares; Sun: particle emission

Solar energetic particle heavy ion properties in the widespread event of 2020 November 29

Context. Following a multi-year minimum of solar activity, a solar energetic particle event on 2020 Nov. 29 was observed by multiple spacecraft covering a wide range of solar longitudes including ACE, the Solar Terrestrial Relations Observatory-A, and the recently launched Parker Solar Probe and Solar Orbiter. \ Aims: Multi-point observations of a solar particle event, combined with remote-sensing imaging of flaring, shocks, and coronal mass ejections allows for a global picture of the event to be synthesized, and made avail ...

Mason, G.~M.; Cohen, C.~M.~S.; Ho, G.~C.; Mitchell, D.~G.; Allen, R.~C.; Hill, M.~E.; Andrews, G.~B.; Berger, L.; Boden, S.; Böttcher, S.; Cernuda, I.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Eldrum, S.; Elftmann, R.; Kollhoff, A.; Giacalone, J.; omez-Herrero, R.; Hayes, J.; Janitzek, N.~P.; Joyce, C.~J.; Korth, A.; Kühl, P.; Kulkarni, S.~R.; Labrador, A.~W.; Lara, Espinosa; Lees, W.~J.; Leske, R.~A.; Mall, U.; Martin, C.; in, Mart\; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, J.~G.; Pacheco, D.; Espada, Parra; Prieto, M.; Rankin, J.~S.; Ravanbakhsh, A.; iguez-Pacheco, Rodr\; Polo, Rodr\; Roelof, E.~C.; anchez-Prieto, S.; Schlemm, C.~E.; Schwadron, N.~A.; Seifert, H.; Stone, E.~C.; Szalay, J.~R.; Terasa, J.~C.; Tyagi, K.; von Forstner, J.~L.; Wiedenbeck, M.~E.; Wimmer-Schweingruber, R.~F.; Xu, Z.~G.; Yedla, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202141310

Parker Data Used; acceleration of particles; Sun: abundances; Sun: flares; Sun: particle emission

Solar energetic particle heavy ion properties in the widespread event of 2020 November 29

Context. Following a multi-year minimum of solar activity, a solar energetic particle event on 2020 Nov. 29 was observed by multiple spacecraft covering a wide range of solar longitudes including ACE, the Solar Terrestrial Relations Observatory-A, and the recently launched Parker Solar Probe and Solar Orbiter. \ Aims: Multi-point observations of a solar particle event, combined with remote-sensing imaging of flaring, shocks, and coronal mass ejections allows for a global picture of the event to be synthesized, and made avail ...

Mason, G.~M.; Cohen, C.~M.~S.; Ho, G.~C.; Mitchell, D.~G.; Allen, R.~C.; Hill, M.~E.; Andrews, G.~B.; Berger, L.; Boden, S.; Böttcher, S.; Cernuda, I.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Eldrum, S.; Elftmann, R.; Kollhoff, A.; Giacalone, J.; omez-Herrero, R.; Hayes, J.; Janitzek, N.~P.; Joyce, C.~J.; Korth, A.; Kühl, P.; Kulkarni, S.~R.; Labrador, A.~W.; Lara, Espinosa; Lees, W.~J.; Leske, R.~A.; Mall, U.; Martin, C.; in, Mart\; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, J.~G.; Pacheco, D.; Espada, Parra; Prieto, M.; Rankin, J.~S.; Ravanbakhsh, A.; iguez-Pacheco, Rodr\; Polo, Rodr\; Roelof, E.~C.; anchez-Prieto, S.; Schlemm, C.~E.; Schwadron, N.~A.; Seifert, H.; Stone, E.~C.; Szalay, J.~R.; Terasa, J.~C.; Tyagi, K.; von Forstner, J.~L.; Wiedenbeck, M.~E.; Wimmer-Schweingruber, R.~F.; Xu, Z.~G.; Yedla, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202141310

Parker Data Used; acceleration of particles; Sun: abundances; Sun: flares; Sun: particle emission

Simulations of radio-wave anisotropic scattering to interpret type III radio burst data from Solar Orbiter, Parker Solar Probe, STEREO, and Wind

\ Aims: We use multi-spacecraft observations of individual type III radio bursts to calculate the directivity of the radio emission. We compare these data to the results of ray-tracing simulations of the radio-wave propagation and probe the plasma properties of the inner heliosphere. \ Methods: We used ray-tracing simulations of radio-wave propagation with anisotropic scattering on density inhomogeneities to study the directivity of radio emissions. Simultaneous observations of type III radio bursts by four widely separated ...

Musset, S.; Maksimovic, M.; Kontar, E.; Krupar, V.; Chrysaphi, N.; Bonnin, X.; Vecchio, A.; Cecconi, B.; Zaslavsky, A.; Issautier, K.; Bale, S.~D.; Pulupa, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140998

Parker Data Used; Sun: radio radiation; scattering; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

PSP/IS\ensuremath\odotIS observations of the 29 November 2020 solar energetic particle event

\ Aims: On 29 November 2020, at 12:34 UT, active region 12790 erupted with an M4.4 class flare and a 1700 km s$^\ensuremath-1$ coronal mass ejection. Parker Solar Probe (PSP) was completing its seventh orbit around the Sun and was located at 0.8 au when the Integrated Science Investigation of the Sun (IS\ensuremath\odotIS) measured the ensuing mid- sized solar energetic particle (SEP) event. Not only was this the first SEP event with heavy ions above 10 MeV nuc$^\ensuremath-1$ to be measured by IS\ensuremath\odotIS, it was a ...

Cohen, C.~M.~S.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Giacalone, J.; Hill, M.~E.; Joyce, C.~J.; Labrador, A.~W.; Leske, R.~A.; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, D.~G.; Mitchell, J.~G.; Rankin, J.~S.; Roelof, E.~C.; Schwadron, N.~A.; Stone, E.~C.; Szalay, J.~R.; Wiedenbeck, M.~E.; Vourlidas, A.; Bale, S.~D.; Pulupa, M.; MacDowall, R.~J.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140967

Parker Data Used; Sun: particle emission; Sun: activity; solar-terrestrial relations

PSP/IS\ensuremath\odotIS observations of the 29 November 2020 solar energetic particle event

\ Aims: On 29 November 2020, at 12:34 UT, active region 12790 erupted with an M4.4 class flare and a 1700 km s$^\ensuremath-1$ coronal mass ejection. Parker Solar Probe (PSP) was completing its seventh orbit around the Sun and was located at 0.8 au when the Integrated Science Investigation of the Sun (IS\ensuremath\odotIS) measured the ensuing mid- sized solar energetic particle (SEP) event. Not only was this the first SEP event with heavy ions above 10 MeV nuc$^\ensuremath-1$ to be measured by IS\ensuremath\odotIS, it was a ...

Cohen, C.~M.~S.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Giacalone, J.; Hill, M.~E.; Joyce, C.~J.; Labrador, A.~W.; Leske, R.~A.; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, D.~G.; Mitchell, J.~G.; Rankin, J.~S.; Roelof, E.~C.; Schwadron, N.~A.; Stone, E.~C.; Szalay, J.~R.; Wiedenbeck, M.~E.; Vourlidas, A.; Bale, S.~D.; Pulupa, M.; MacDowall, R.~J.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140967

Parker Data Used; Sun: particle emission; Sun: activity; solar-terrestrial relations

PSP/IS\ensuremath\odotIS observations of the 29 November 2020 solar energetic particle event

\ Aims: On 29 November 2020, at 12:34 UT, active region 12790 erupted with an M4.4 class flare and a 1700 km s$^\ensuremath-1$ coronal mass ejection. Parker Solar Probe (PSP) was completing its seventh orbit around the Sun and was located at 0.8 au when the Integrated Science Investigation of the Sun (IS\ensuremath\odotIS) measured the ensuing mid- sized solar energetic particle (SEP) event. Not only was this the first SEP event with heavy ions above 10 MeV nuc$^\ensuremath-1$ to be measured by IS\ensuremath\odotIS, it was a ...

Cohen, C.~M.~S.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Giacalone, J.; Hill, M.~E.; Joyce, C.~J.; Labrador, A.~W.; Leske, R.~A.; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, D.~G.; Mitchell, J.~G.; Rankin, J.~S.; Roelof, E.~C.; Schwadron, N.~A.; Stone, E.~C.; Szalay, J.~R.; Wiedenbeck, M.~E.; Vourlidas, A.; Bale, S.~D.; Pulupa, M.; MacDowall, R.~J.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140967

Parker Data Used; Sun: particle emission; Sun: activity; solar-terrestrial relations

PSP/IS\ensuremath\odotIS observations of the 29 November 2020 solar energetic particle event

\ Aims: On 29 November 2020, at 12:34 UT, active region 12790 erupted with an M4.4 class flare and a 1700 km s$^\ensuremath-1$ coronal mass ejection. Parker Solar Probe (PSP) was completing its seventh orbit around the Sun and was located at 0.8 au when the Integrated Science Investigation of the Sun (IS\ensuremath\odotIS) measured the ensuing mid- sized solar energetic particle (SEP) event. Not only was this the first SEP event with heavy ions above 10 MeV nuc$^\ensuremath-1$ to be measured by IS\ensuremath\odotIS, it was a ...

Cohen, C.~M.~S.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Giacalone, J.; Hill, M.~E.; Joyce, C.~J.; Labrador, A.~W.; Leske, R.~A.; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, D.~G.; Mitchell, J.~G.; Rankin, J.~S.; Roelof, E.~C.; Schwadron, N.~A.; Stone, E.~C.; Szalay, J.~R.; Wiedenbeck, M.~E.; Vourlidas, A.; Bale, S.~D.; Pulupa, M.; MacDowall, R.~J.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140967

Parker Data Used; Sun: particle emission; Sun: activity; solar-terrestrial relations

PSP/IS\ensuremath\odotIS observations of the 29 November 2020 solar energetic particle event

\ Aims: On 29 November 2020, at 12:34 UT, active region 12790 erupted with an M4.4 class flare and a 1700 km s$^\ensuremath-1$ coronal mass ejection. Parker Solar Probe (PSP) was completing its seventh orbit around the Sun and was located at 0.8 au when the Integrated Science Investigation of the Sun (IS\ensuremath\odotIS) measured the ensuing mid- sized solar energetic particle (SEP) event. Not only was this the first SEP event with heavy ions above 10 MeV nuc$^\ensuremath-1$ to be measured by IS\ensuremath\odotIS, it was a ...

Cohen, C.~M.~S.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Giacalone, J.; Hill, M.~E.; Joyce, C.~J.; Labrador, A.~W.; Leske, R.~A.; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, D.~G.; Mitchell, J.~G.; Rankin, J.~S.; Roelof, E.~C.; Schwadron, N.~A.; Stone, E.~C.; Szalay, J.~R.; Wiedenbeck, M.~E.; Vourlidas, A.; Bale, S.~D.; Pulupa, M.; MacDowall, R.~J.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140967

Parker Data Used; Sun: particle emission; Sun: activity; solar-terrestrial relations

First Solar Orbiter observation of the Alfv\ enic slow wind and identification of its solar source

Context. Turbulence dominated by large-amplitude, nonlinear Alfv\ en-like fluctuations mainly propagating away from the Sun is ubiquitous in high-speed solar wind streams. Recent studies have demontrated that slow wind streams may also show strong Alfv\ enic signatures, especially in the inner heliosphere. \ Aims: The present study focuses on the characterisation of an Alfv\ enic slow solar wind interval observed by Solar Orbiter between 14 and 18 July 2020 at a heliocentric distance of 0.64 AU. \ Methods: Our analysis is ba ...

Amicis, R.; Bruno, R.; Panasenco, O.; Telloni, D.; Perrone, D.; Marcucci, M.~F.; Woodham, L.; Velli, M.; De Marco, R.; Jagarlamudi, V.; Coco, I.; Owen, C.; Louarn, P.; Livi, S.; Horbury, T.; e, Andr\; Angelini, V.; Evans, V.; Fedorov, A.; Genot, V.; Lavraud, B.; Matteini, L.; Müller, D.; Brien, H.; Pezzi, O.; Rouillard, A.~P.; Sorriso-Valvo, L.; Tenerani, A.; Verscharen, D.; Zouganelis, I.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140938

Parker Data Used; Interplanetary medium; Solar wind; methods: data analysis; magnetohydrodynamics (MHD); turbulence; Sun: general

Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage. Observations and modeling

Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ...

Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140648

Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations

Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage. Observations and modeling

Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ...

Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140648

Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations

Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage. Observations and modeling

Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ...

Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140648

Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations

Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage. Observations and modeling

Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ...

Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140648

Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations

Switchback-like structures observed by Solar Orbiter

Context. Rapid polarity reversals of the radial heliospheric magnetic field were discovered by Ulysses and they are now frequently observed as a common near-Sun phenomenon by NASA s Parker Solar Probe (PSP). Other solar wind missions, including ESA-NASA Solar Orbiter (SolO), also observe similar phenomena. The nature of these fluctuations is unclear, and the relation between the switchbacks observed near the Sun and similar events observed at 1 AU is unknown. \ Aims: We make a detailed case study of the SolO plasma and m ...

Fedorov, A.; Louarn, P.; Owen, C.~J.; Horbury, T.~S.; Prech, L.; Durovcova, T.; Barthe, A.; Rouillard, A.~P.; Kasper, J.~C.; Bale, S.~D.; Bruno, R.; Brien, H.; Evans, V.; Angelini, V.; Larson, D.; Livi, R.; Lavraud, B.; Andre, N.; Genot, V.; Penou, E.; Mele, G.; Fortunato, V.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202141246

Parker Data Used; magnetic reconnection; Sun: heliosphere

The angular-momentum flux in the solar wind observed during Solar Orbiter s first orbit

\ Aims: We present the first measurements of the angular- momentum flux in the solar wind recorded by the Solar Orbiter spacecraft. Our aim is to validate these measurements to support future studies of the Sun s angular-momentum loss. \ Methods: We combined 60-min averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser and the magnetometer onboard Solar Orbiter. We calculated the angular-momentum flux per solid-angle element using data from the first orbit of the mission s cruise phase ...

Verscharen, Daniel; Stansby, David; Finley, Adam; Owen, Christopher; Horbury, Timothy; Maksimovic, Milan; Velli, Marco; Bale, Stuart; Louarn, Philippe; Fedorov, Andrei; Bruno, Roberto; Livi, Stefano; Khotyaintsev, Yuri; Vecchio, Antonio; Lewis, Gethyn; Anekallu, Chandrasekhar; Kelly, Christopher; Watson, Gillian; Kataria, Dhiren; Brien, Helen; Evans, Vincent; Angelini, Virginia; SWA, MAG; Teams, RPW;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140956

magnetohydrodynamics (MHD); plasmas; Sun: magnetic fields; Solar wind; stars: rotation; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

The angular-momentum flux in the solar wind observed during Solar Orbiter s first orbit

\ Aims: We present the first measurements of the angular- momentum flux in the solar wind recorded by the Solar Orbiter spacecraft. Our aim is to validate these measurements to support future studies of the Sun s angular-momentum loss. \ Methods: We combined 60-min averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser and the magnetometer onboard Solar Orbiter. We calculated the angular-momentum flux per solid-angle element using data from the first orbit of the mission s cruise phase ...

Verscharen, Daniel; Stansby, David; Finley, Adam; Owen, Christopher; Horbury, Timothy; Maksimovic, Milan; Velli, Marco; Bale, Stuart; Louarn, Philippe; Fedorov, Andrei; Bruno, Roberto; Livi, Stefano; Khotyaintsev, Yuri; Vecchio, Antonio; Lewis, Gethyn; Anekallu, Chandrasekhar; Kelly, Christopher; Watson, Gillian; Kataria, Dhiren; Brien, Helen; Evans, Vincent; Angelini, Virginia; SWA, MAG; Teams, RPW;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140956

magnetohydrodynamics (MHD); plasmas; Sun: magnetic fields; Solar wind; stars: rotation; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29

Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (\ensuremath\lesssim1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near- Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and a ...

Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; omez-Herrero, R.; ia, Rodr\; Malandraki, O.~E.; Richardson, I.~G.; Posner, A.; Klein, K.; Pacheco, D.; Klassen, A.; Heber, B.; Cohen, C.~M.~S.; Laitinen, T.; Cernuda, I.; Dalla, S.; Lara, Espinosa; Vainio, R.; Köberle, M.; Kühl, R.; Xu, Z.~G.; Berger, L.; Eldrum, S.; Brüdern, M.; Laurenza, M.; Kilpua, E.~J.; Aran, A.; Rouillard, A.~P.; ik, Bu\vc\; Wijsen, N.; Pomoell, J.; Wimmer-Schweingruber, R.~F.; Martin, C.; Böttcher, S.~I.; von Forstner, J.~L.; Terasa, J.; Boden, S.; Kulkarni, S.~R.; Ravanbakhsh, A.; Yedla, M.; Janitzek, N.; iguez-Pacheco, Rodr\; Mateo, Prieto; Prieto, S.; Espada, Parra; Polo, Rodr\; in, Mart\; Carcaboso, F.; Mason, G.~M.; Ho, G.~C.; Allen, R.~C.; Andrews, Bruce; Schlemm, C.~E.; Seifert, H.; Tyagi, K.; Lees, W.~J.; Hayes, J.; Bale, S.~D.; Krupar, V.; Horbury, T.~S.; Angelini, V.; Evans, V.; Brien, H.; Maksimovic, M.; Khotyaintsev, Yu.; Vecchio, A.; Steinvall, K.; Asvestari, E.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140937

Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: coronal mass ejections (CMEs); Sun: flares; Interplanetary medium

The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29

Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (\ensuremath\lesssim1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near- Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and a ...

Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; omez-Herrero, R.; ia, Rodr\; Malandraki, O.~E.; Richardson, I.~G.; Posner, A.; Klein, K.; Pacheco, D.; Klassen, A.; Heber, B.; Cohen, C.~M.~S.; Laitinen, T.; Cernuda, I.; Dalla, S.; Lara, Espinosa; Vainio, R.; Köberle, M.; Kühl, R.; Xu, Z.~G.; Berger, L.; Eldrum, S.; Brüdern, M.; Laurenza, M.; Kilpua, E.~J.; Aran, A.; Rouillard, A.~P.; ik, Bu\vc\; Wijsen, N.; Pomoell, J.; Wimmer-Schweingruber, R.~F.; Martin, C.; Böttcher, S.~I.; von Forstner, J.~L.; Terasa, J.; Boden, S.; Kulkarni, S.~R.; Ravanbakhsh, A.; Yedla, M.; Janitzek, N.; iguez-Pacheco, Rodr\; Mateo, Prieto; Prieto, S.; Espada, Parra; Polo, Rodr\; in, Mart\; Carcaboso, F.; Mason, G.~M.; Ho, G.~C.; Allen, R.~C.; Andrews, Bruce; Schlemm, C.~E.; Seifert, H.; Tyagi, K.; Lees, W.~J.; Hayes, J.; Bale, S.~D.; Krupar, V.; Horbury, T.~S.; Angelini, V.; Evans, V.; Brien, H.; Maksimovic, M.; Khotyaintsev, Yu.; Vecchio, A.; Steinvall, K.; Asvestari, E.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140937

Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: coronal mass ejections (CMEs); Sun: flares; Interplanetary medium

The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29

Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (\ensuremath\lesssim1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near- Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and a ...

Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; omez-Herrero, R.; ia, Rodr\; Malandraki, O.~E.; Richardson, I.~G.; Posner, A.; Klein, K.; Pacheco, D.; Klassen, A.; Heber, B.; Cohen, C.~M.~S.; Laitinen, T.; Cernuda, I.; Dalla, S.; Lara, Espinosa; Vainio, R.; Köberle, M.; Kühl, R.; Xu, Z.~G.; Berger, L.; Eldrum, S.; Brüdern, M.; Laurenza, M.; Kilpua, E.~J.; Aran, A.; Rouillard, A.~P.; ik, Bu\vc\; Wijsen, N.; Pomoell, J.; Wimmer-Schweingruber, R.~F.; Martin, C.; Böttcher, S.~I.; von Forstner, J.~L.; Terasa, J.; Boden, S.; Kulkarni, S.~R.; Ravanbakhsh, A.; Yedla, M.; Janitzek, N.; iguez-Pacheco, Rodr\; Mateo, Prieto; Prieto, S.; Espada, Parra; Polo, Rodr\; in, Mart\; Carcaboso, F.; Mason, G.~M.; Ho, G.~C.; Allen, R.~C.; Andrews, Bruce; Schlemm, C.~E.; Seifert, H.; Tyagi, K.; Lees, W.~J.; Hayes, J.; Bale, S.~D.; Krupar, V.; Horbury, T.~S.; Angelini, V.; Evans, V.; Brien, H.; Maksimovic, M.; Khotyaintsev, Yu.; Vecchio, A.; Steinvall, K.; Asvestari, E.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140937

Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: coronal mass ejections (CMEs); Sun: flares; Interplanetary medium

The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29

Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (\ensuremath\lesssim1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near- Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and a ...

Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; omez-Herrero, R.; ia, Rodr\; Malandraki, O.~E.; Richardson, I.~G.; Posner, A.; Klein, K.; Pacheco, D.; Klassen, A.; Heber, B.; Cohen, C.~M.~S.; Laitinen, T.; Cernuda, I.; Dalla, S.; Lara, Espinosa; Vainio, R.; Köberle, M.; Kühl, R.; Xu, Z.~G.; Berger, L.; Eldrum, S.; Brüdern, M.; Laurenza, M.; Kilpua, E.~J.; Aran, A.; Rouillard, A.~P.; ik, Bu\vc\; Wijsen, N.; Pomoell, J.; Wimmer-Schweingruber, R.~F.; Martin, C.; Böttcher, S.~I.; von Forstner, J.~L.; Terasa, J.; Boden, S.; Kulkarni, S.~R.; Ravanbakhsh, A.; Yedla, M.; Janitzek, N.; iguez-Pacheco, Rodr\; Mateo, Prieto; Prieto, S.; Espada, Parra; Polo, Rodr\; in, Mart\; Carcaboso, F.; Mason, G.~M.; Ho, G.~C.; Allen, R.~C.; Andrews, Bruce; Schlemm, C.~E.; Seifert, H.; Tyagi, K.; Lees, W.~J.; Hayes, J.; Bale, S.~D.; Krupar, V.; Horbury, T.~S.; Angelini, V.; Evans, V.; Brien, H.; Maksimovic, M.; Khotyaintsev, Yu.; Vecchio, A.; Steinvall, K.; Asvestari, E.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140937

Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: coronal mass ejections (CMEs); Sun: flares; Interplanetary medium

The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29

Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (\ensuremath\lesssim1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near- Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and a ...

Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; omez-Herrero, R.; ia, Rodr\; Malandraki, O.~E.; Richardson, I.~G.; Posner, A.; Klein, K.; Pacheco, D.; Klassen, A.; Heber, B.; Cohen, C.~M.~S.; Laitinen, T.; Cernuda, I.; Dalla, S.; Lara, Espinosa; Vainio, R.; Köberle, M.; Kühl, R.; Xu, Z.~G.; Berger, L.; Eldrum, S.; Brüdern, M.; Laurenza, M.; Kilpua, E.~J.; Aran, A.; Rouillard, A.~P.; ik, Bu\vc\; Wijsen, N.; Pomoell, J.; Wimmer-Schweingruber, R.~F.; Martin, C.; Böttcher, S.~I.; von Forstner, J.~L.; Terasa, J.; Boden, S.; Kulkarni, S.~R.; Ravanbakhsh, A.; Yedla, M.; Janitzek, N.; iguez-Pacheco, Rodr\; Mateo, Prieto; Prieto, S.; Espada, Parra; Polo, Rodr\; in, Mart\; Carcaboso, F.; Mason, G.~M.; Ho, G.~C.; Allen, R.~C.; Andrews, Bruce; Schlemm, C.~E.; Seifert, H.; Tyagi, K.; Lees, W.~J.; Hayes, J.; Bale, S.~D.; Krupar, V.; Horbury, T.~S.; Angelini, V.; Evans, V.; Brien, H.; Maksimovic, M.; Khotyaintsev, Yu.; Vecchio, A.; Steinvall, K.; Asvestari, E.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140937

Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: coronal mass ejections (CMEs); Sun: flares; Interplanetary medium

Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter s DC electric field measurements

Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. \ Aims: In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In p ...

Steinvall, K.; Khotyaintsev, Yu.; Cozzani, G.; Vaivads, A.; Yordanova, E.; Eriksson, A.~I.; Edberg, N.~J.~T.; Maksimovic, M.; Bale, S.~D.; Chust, T.; Krasnoselskikh, V.; Kretzschmar, M.; Lorfèvre, E.; Plettemeier, D.; Sou\vcek, J.; Steller, M.; ak, \vS.; Vecchio, A.; Horbury, T.~S.; Brien, H.; Evans, V.; Fedorov, A.; Louarn, P.; enot, V.; e, Andr\; Lavraud, B.; Rouillard, A.~P.; Owen, C.~J.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140855

Parker Data Used; Solar wind; plasmas; magnetic reconnection; methods: data analysis; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter s DC electric field measurements

Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. \ Aims: In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In p ...

Steinvall, K.; Khotyaintsev, Yu.; Cozzani, G.; Vaivads, A.; Yordanova, E.; Eriksson, A.~I.; Edberg, N.~J.~T.; Maksimovic, M.; Bale, S.~D.; Chust, T.; Krasnoselskikh, V.; Kretzschmar, M.; Lorfèvre, E.; Plettemeier, D.; Sou\vcek, J.; Steller, M.; ak, \vS.; Vecchio, A.; Horbury, T.~S.; Brien, H.; Evans, V.; Fedorov, A.; Louarn, P.; enot, V.; e, Andr\; Lavraud, B.; Rouillard, A.~P.; Owen, C.~J.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140855

Parker Data Used; Solar wind; plasmas; magnetic reconnection; methods: data analysis; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe

A primary goal of the Parker Solar Probe (PSP) Mission is to answer the outstanding question of how the solar corona plasma is heated to the high temperatures needed for the acceleration of the solar wind. Various heating mechanisms have been suggested, but one that is gaining increasing credence is associated with the dissipation of low frequency magnetohyrodynamic (MHD) turbulence. However, the MHD turbulence models come in several flavors: one in which outwardly propagating Alfv\ en waves experience reflection from the la ...

Zank, G.~P.; Zhao, L.; Adhikari, L.; Telloni, D.; Kasper, J.~C.; Bale, S.~D.;

Published by: Physics of Plasmas      Published on: aug

YEAR: 2021     DOI: 10.1063/5.0055692

Parker Data Used

The Formation and Lifetime of Outflows in a Solar Active Region

Active regions are thought to be one contributor to the slow solar wind. Upflows in EUV coronal spectral lines are routinely observed at their boundaries, and provide the most direct way for upflowing material to escape into the heliosphere. The mechanisms that form and drive these upflows, however, remain to be fully characterized. It is unclear how quickly they form, or how long they exist during their lifetimes. They could be initiated low in the atmosphere during magnetic flux emergence, or as a response to processes occ ...

Brooks, David; Harra, Louise; Bale, Stuart; Barczynski, Krzysztof; Mandrini, Cristina; Polito, Vanessa; Warren, Harry;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0917

Solar Physics; Slow solar wind; Solar active regions; Solar energetic particles; 1476; 1873; 1974; 1491; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

First Simultaneous In Situ Measurements of a Coronal Mass Ejection by Parker Solar Probe and STEREO-A

We present the first Parker Solar Probe mission (PSP)-observed coronal mass ejection (CME) that hits a second spacecraft before the end of the PSP encounter, providing an excellent opportunity to study short-term CME evolution. The CME was launched from the Sun on 2019 October 10 and was measured in situ at PSP on 2019 October 13 and at STEREO-A on 2019 October 14. The small, but not insignificant, radial (\raisebox-0.5ex\textasciitilde0.15 au) and longitudinal (\raisebox-0.5ex\textasciitilde8\textdegree) separation between ...

Winslow, Reka; Lugaz, No\; Scolini, Camilla; Galvin, Antoinette;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0821

Solar coronal mass ejections; Heliosphere; 310; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Near-Sun Switchback Boundaries: Dissipation with Solar Distance

The most surprising result from the first solar encounters by the Parker Solar Probe (PSP) is the large amount of brief magnetic field reversals often referred to as switchbacks. Switchbacks have previously been observed further downstream in the solar wind by spacecraft such as Helios 2 at 62 R$_s$ from the Sun. However, these observations lack a distinct proton temperature increase detected inside switchbacks by PSP, implying that they are evolving over time to eventually reach a pressure balance at the switchback boundari ...

Rasca, Anthony; Farrell, William; MacDowall, Robert; Bale, Stuart; Kasper, Justin;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac079f

The Sun; Solar wind; Solar Physics; 1693; 1534; 1476; Parker Data Used

Near-Sun Switchback Boundaries: Dissipation with Solar Distance

The most surprising result from the first solar encounters by the Parker Solar Probe (PSP) is the large amount of brief magnetic field reversals often referred to as switchbacks. Switchbacks have previously been observed further downstream in the solar wind by spacecraft such as Helios 2 at 62 R$_s$ from the Sun. However, these observations lack a distinct proton temperature increase detected inside switchbacks by PSP, implying that they are evolving over time to eventually reach a pressure balance at the switchback boundari ...

Rasca, Anthony; Farrell, William; MacDowall, Robert; Bale, Stuart; Kasper, Justin;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac079f

The Sun; Solar wind; Solar Physics; 1693; 1534; 1476; Parker Data Used

Characteristics of Interplanetary Discontinuities in the Inner Heliosphere Revealed by Parker Solar Probe

We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13-0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. We collected 3948 IDs, including 2511 rotational discontinuities (RDs) and 557 tangential discontinuities (TDs), with the remnant unidentified. The statistical results show that (1) the ID occurrence rate decreases from 200 events per day at 0.13 au to 1 event per day at 0.9 au, following a spatial scali ...

Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; Xu, Y.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac06a1

Interplanetary discontinuities; Solar wind; interplanetary magnetic fields; Magnetohydrodynamics; 820; 1534; 824; 1964; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Multi-spacecraft study of the solar wind at solar minimum: Dependence on latitude and transient outflows

Context. The recent launches of Parker Solar Probe, Solar Orbiter (SO), and BepiColombo, along with several older spacecraft, have provided the opportunity to study the solar wind at multiple latitudes and distances from the Sun simultaneously. \ Aims: We take advantage of this unique spacecraft constellation, along with low solar activity across two solar rotations between May and July 2020, to investigate how the solar wind structure, including the heliospheric current sheet (HCS), varies with latitude. \ Methods: We visua ...

Laker, R.; Horbury, T.~S.; Bale, S.~D.; Matteini, L.; Woolley, T.; Woodham, L.~D.; Stawarz, J.~E.; Davies, E.~E.; Eastwood, J.~P.; Owens, M.~J.; Brien, H.; Evans, V.; Angelini, V.; Richter, I.; Heyner, D.; Owen, C.~J.; Louarn, P.; Fedorov, A.;

Published by: \aap      Published on: aug

YEAR: 2021     DOI: 10.1051/0004-6361/202140679

Sun: coronal mass ejections (CMEs); Solar wind; Sun: heliosphere; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Plasma Properties, Switchback Patches and Low \ensuremath\alpha-Particle Abundance in Slow Alfv\ enic Coronal Hole Wind at 0.13 au

The Parker Solar Probe (PSP) mission presents a unique opportunity to study the near-Sun solar wind closer than any previous spacecraft. During its fourth and fifth solar encounters, PSP had the same orbital trajectory, meaning that solar wind was measured at the same latitudes and radial distances. We identify two streams measured at the same heliocentric distance (\raisebox-0.5ex\textasciitilde0.13au) and latitude (\raisebox-0.5ex\textasciitilde-3.5$^○$) across these encounters to reduce spatial evolution effects. By com ...

Woolley, Thomas; Matteini, Lorenzo; McManus, Michael; Ber\vci\vc, Laura; Badman, Samuel; Woodham, Lloyd; Horbury, Timothy; Bale, Stuart; Laker, Ronan; Stawarz, Julia; Larson, Davin;

Published by: \mnras      Published on: aug

YEAR: 2021     DOI: 10.1093/mnras/stab2281

Sun: heliosphere; Solar wind; magnetic fields; Parker Data Used

Time evolution of stream interaction region energetic particle spectra in the inner heliosphere

We analyze an energetic proton event associated with a stream interaction region (SIR) that was observed at Parker Solar Probe on day 320 of 2018 when the spacecraft was just 0.34 AU from the Sun. Using the Integrated Science Investigation of the Sun instrument suite, we perform a spectral analysis of the event and show how the observed spectra evolve over the course of the event. We find that the spectra from the first day of the event are much more consistent with local acceleration at a weak compression, while spectra fro ...

Joyce, C.; McComas, D.; Schwadron, N.; Christian, E.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Allen, R.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.; Bale, S.; Kasper, J.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039330

acceleration of particles; Solar wind; magnetic fields; Parker Data Used

Time evolution of stream interaction region energetic particle spectra in the inner heliosphere

We analyze an energetic proton event associated with a stream interaction region (SIR) that was observed at Parker Solar Probe on day 320 of 2018 when the spacecraft was just 0.34 AU from the Sun. Using the Integrated Science Investigation of the Sun instrument suite, we perform a spectral analysis of the event and show how the observed spectra evolve over the course of the event. We find that the spectra from the first day of the event are much more consistent with local acceleration at a weak compression, while spectra fro ...

Joyce, C.; McComas, D.; Schwadron, N.; Christian, E.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Allen, R.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.; Bale, S.; Kasper, J.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039330

acceleration of particles; Solar wind; magnetic fields; Parker Data Used

Time evolution of stream interaction region energetic particle spectra in the inner heliosphere

We analyze an energetic proton event associated with a stream interaction region (SIR) that was observed at Parker Solar Probe on day 320 of 2018 when the spacecraft was just 0.34 AU from the Sun. Using the Integrated Science Investigation of the Sun instrument suite, we perform a spectral analysis of the event and show how the observed spectra evolve over the course of the event. We find that the spectra from the first day of the event are much more consistent with local acceleration at a weak compression, while spectra fro ...

Joyce, C.; McComas, D.; Schwadron, N.; Christian, E.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Allen, R.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.; Bale, S.; Kasper, J.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039330

acceleration of particles; Solar wind; magnetic fields; Parker Data Used

Time evolution of stream interaction region energetic particle spectra in the inner heliosphere

We analyze an energetic proton event associated with a stream interaction region (SIR) that was observed at Parker Solar Probe on day 320 of 2018 when the spacecraft was just 0.34 AU from the Sun. Using the Integrated Science Investigation of the Sun instrument suite, we perform a spectral analysis of the event and show how the observed spectra evolve over the course of the event. We find that the spectra from the first day of the event are much more consistent with local acceleration at a weak compression, while spectra fro ...

Joyce, C.; McComas, D.; Schwadron, N.; Christian, E.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Allen, R.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.; Bale, S.; Kasper, J.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039330

acceleration of particles; Solar wind; magnetic fields; Parker Data Used

Time evolution of stream interaction region energetic particle spectra in the inner heliosphere

We analyze an energetic proton event associated with a stream interaction region (SIR) that was observed at Parker Solar Probe on day 320 of 2018 when the spacecraft was just 0.34 AU from the Sun. Using the Integrated Science Investigation of the Sun instrument suite, we perform a spectral analysis of the event and show how the observed spectra evolve over the course of the event. We find that the spectra from the first day of the event are much more consistent with local acceleration at a weak compression, while spectra fro ...

Joyce, C.; McComas, D.; Schwadron, N.; Christian, E.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Allen, R.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.; Bale, S.; Kasper, J.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039330

acceleration of particles; Solar wind; magnetic fields; Parker Data Used

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used

Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind

Context. Recent studies of the solar wind sunward of 0.25 AU reveal that it contains quiescent regions, with low-amplitude plasma and magnetic field fluctuations, and a magnetic field direction similar to the Parker spiral. The quiescent regions are thought to have a more direct magnetic connection to the solar corona than other types of solar wind, suggesting that waves or instabilities in the quiescent regions are indicative of the early evolution of the solar wind as it escapes the corona. The quiescent solar wind regions ...

Malaspina, D.; Wilson, L.; Ergun, R.; Bale, S.; Bonnell, J.; Goodrich, K.; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Halekas, J.; Case, A.; Kasper, J.; Larson, D.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202140449

Solar wind; plasmas; instabilities; waves; Parker Data Used

Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind

Context. Recent studies of the solar wind sunward of 0.25 AU reveal that it contains quiescent regions, with low-amplitude plasma and magnetic field fluctuations, and a magnetic field direction similar to the Parker spiral. The quiescent regions are thought to have a more direct magnetic connection to the solar corona than other types of solar wind, suggesting that waves or instabilities in the quiescent regions are indicative of the early evolution of the solar wind as it escapes the corona. The quiescent solar wind regions ...

Malaspina, D.; Wilson, L.; Ergun, R.; Bale, S.; Bonnell, J.; Goodrich, K.; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Halekas, J.; Case, A.; Kasper, J.; Larson, D.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202140449

Solar wind; plasmas; instabilities; waves; Parker Data Used

Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind

Context. Recent studies of the solar wind sunward of 0.25 AU reveal that it contains quiescent regions, with low-amplitude plasma and magnetic field fluctuations, and a magnetic field direction similar to the Parker spiral. The quiescent regions are thought to have a more direct magnetic connection to the solar corona than other types of solar wind, suggesting that waves or instabilities in the quiescent regions are indicative of the early evolution of the solar wind as it escapes the corona. The quiescent solar wind regions ...

Malaspina, D.; Wilson, L.; Ergun, R.; Bale, S.; Bonnell, J.; Goodrich, K.; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Halekas, J.; Case, A.; Kasper, J.; Larson, D.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202140449

Solar wind; plasmas; instabilities; waves; Parker Data Used

Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind

Context. Recent studies of the solar wind sunward of 0.25 AU reveal that it contains quiescent regions, with low-amplitude plasma and magnetic field fluctuations, and a magnetic field direction similar to the Parker spiral. The quiescent regions are thought to have a more direct magnetic connection to the solar corona than other types of solar wind, suggesting that waves or instabilities in the quiescent regions are indicative of the early evolution of the solar wind as it escapes the corona. The quiescent solar wind regions ...

Malaspina, D.; Wilson, L.; Ergun, R.; Bale, S.; Bonnell, J.; Goodrich, K.; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Halekas, J.; Case, A.; Kasper, J.; Larson, D.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202140449

Solar wind; plasmas; instabilities; waves; Parker Data Used

Thin silicon solid-state detectors for energetic particle measurements. Development, characterization, and application on NASA s Parker Solar Probe mission

Context. Silicon solid-state detectors are commonly used for measuring the specific ionization, dE∕dx, in instruments designed for identifying energetic nuclei using the dE∕dx versus total energy technique in space and in the laboratory. The energy threshold and species resolution of the technique strongly depend on the thickness and thickness uniformity of these detectors.
Aims: Research has been carried out to develop processes for fabricating detectors that are thinner than 15 μm, that have a thickness uniform ...

Wiedenbeck, M.; Burnham, J.; Cohen, C.; Cook, W.; Crabill, R.; Cummings, A.; Davis, A.; Kecman, B.; Labrador, A.; Leske, R.; Mewaldt, R.; Rankin, J.; Rusert, M.; Stone, E.; Christian, E.; Goodwin, P.; Link, J.; Nahory, B.; Shuman, S.; von Rosenvinge, T.; Tindall, C.; Black, H.; Bullough, M.; Clarke, N.; Glasson, V.; Greenwood, N.; Hawkins, C.; Johnson, T.; Newton, A.; Richardson, K.; Walsh, S.; Wilburn, C.; Birdwell, B.; Everett, d.; McComas, D.; Weidner, S.; Angold, N.; Schwadron, N.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039754

instrumentation: detectors; Sun: particle emission; acceleration of particles; space vehicles: instruments; Parker Data Used



  4      5      6      7      8      9