PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 235 entries in the Bibliography.


Showing entries from 201 through 235


2015

ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE

The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric dista ...

Comişel, H.; Motschmann, U.; üchner, J.; Narita, Y.; Nariyuki, Y.;

Published by: The Astrophysical Journal      Published on: 10/2015

YEAR: 2015     DOI: 10.1088/0004-637X/812/2/175

parker solar probe; plasmas; Solar Probe Plus; Solar wind; turbulence; waves

Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP

KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg \& Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1\% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric d ...

Isenberg, Philip; Vasquez, Bernard;

Published by: The Astrophysical Journal      Published on: 08/2015

YEAR: 2015     DOI: 10.1088/0004-637X/808/2/119

parker solar probe; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence; waves

RADIAL EVOLUTION OF A MAGNETIC CLOUD: MESSENGER , STEREO , AND VENUS EXPRESS OBSERVATIONS

The Solar Orbiter and Solar Probe Plus missions will provide observations of magnetic clouds closer to the Sun than ever before, and it will be good preparation for these missions to make full use of the most recent in situ data sets from the inner heliosphere\textemdashnamely, those provided by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express\textemdashfor magnetic cloud studies. We present observations of the same magnetic cloud made by MESSENGER at Mercury and later by Solar T ...

Good, S.; Forsyth, R.; Raines, J.; Gershman, D.; Slavin, J.; Zurbuchen, T.;

Published by: The Astrophysical Journal      Published on: 07/2015

YEAR: 2015     DOI: 10.1088/0004-637X/807/2/177

magnetic fields; parker solar probe; Solar Probe Plus; Solar wind; Sun: coronal mass ejections: CMEs; Sun: heliosphere

A MODIFIED VERSION OF TAYLOR\textquoterightS HYPOTHESIS FOR SOLAR PROBE PLUS OBSERVATIONS

The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10 R. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor\textquoterights \textquotedblleftfrozen turbulence\textquotedblright hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfv\ en speed, and Taylor\text ...

Klein, Kristopher; Perez, Jean; Verscharen, Daniel; Mallet, Alfred; Chandran, Benjamin;

Published by: The Astrophysical Journal      Published on: 03/2015

YEAR: 2015     DOI: 10.1088/2041-8205/801/1/L18

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence

Solar and heliospheric space missions

The paper provides a review of the state of the art and prospects of space research in heliophysics, in which a pivotal role belongs to magnetic measurements in the Sun and heliosphere. New space missions, such as the Interhelioprobe, Solar Orbiter, Solar Probe Plus, etc., will follow the currently operating ones (Hinode, SDO, STEREO, etc.) to observe the Sun from short distances and from out-of-ecliptic positions, as well as to conduct in situ measurements in the vicinity of the Sun and outside the ecliptic. The planned ...

Kuznetsov, V.D.;

Published by: Advances in Space Research      Published on: 02/2015

YEAR: 2015     DOI: 10.1016/j.asr.2014.07.034

Heliosphere; Parker Data Used; parker solar probe; Solar and heliospheric space missions; Solar Probe Plus; Sun

Statistical study of magnetic cloud erosion by magnetic reconnection

recent studies suggest that magnetic reconnection is able to erode substantial amounts of the outer magnetic flux of interplanetary magnetic clouds (MCs) as they propagate in the heliosphere. We quantify and provide a broader context to this process, starting from 263 tabulated interplanetary coronal mass ejections, including MCs, observed over a time period covering 17 years and at a distance of 1 AU from the Sun with Wind (1995-2008) and the two STEREO (2009-2012) spacecraft. Based on several quality factors, including ...

Ruffenach, A.; Lavraud, B.; Farrugia, C.; emoulin, P.; Dasso, S.; Owens, M.; Sauvaud, J.-A.; Rouillard, A.; Lynnyk, A.; Foullon, C.; Savani, N.; Luhmann, J.; Galvin, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020628

coronal mass ejection; magnetic cloud; magnetic flux rope; magnetic reconnection; parker solar probe; Solar Probe Plus; Solar wind

2014

DYNAMICS OF DOUBLE LAYERS, ION ACCELERATION, AND HEAT FLUX SUPPRESSION DURING SOLAR FLARES

Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger ...

Li, T.; Drake, J.; Swisdak, M.;

Published by: The Astrophysical Journal      Published on: 09/2014

YEAR: 2014     DOI: 10.1088/0004-637X/793/1/7

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: flares

Experimental study of pyrolytic boron nitride at high temperature with and without proton and VUV irradiations

In the frame of future exploration missions such as Solar Probe Plus (NASA) and PHOIBOS (ESA), research was carried out to study pyrolytic BN material envisaged as coating for their heat shields. The physico-chemical behavior of CVD pBN at very high temperature with or without hydrogen ions and VUV (Vacuum Ultra-Violet) irradiations was studied in high vacuum together with the in situ measurement of the thermal radiative properties conditioning the thermal equilibrium of the heat shield. Experimental results obtained on m ...

Balat-Pichelin, M.; Eck, J.; Heurtault, S.; enat, H.;

Published by: Applied Surface Science      Published on: 09/2014

YEAR: 2014     DOI: 10.1016/j.apsusc.2014.07.007

Boron nitride; Heat treatment; Mechanical properties; Optical properties; parker solar probe; Proton irradiation; Solar Probe Plus

Mass loading of the solar wind by a sungrazing comet

Collisionless mass loading was suggested by Biermann et al. (1967) for describing interactions between the solar wind and cometary atmospheres. Recent observations have led to an increased interest in coronal mass loading due to sungrazing comets and collisional debris of sunward migrating interplanetary dust particles. In a previous paper, we presented a 3-D MHD model of the solar corona based on the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme code which includes the interaction of dust with the solar wind. We have s ...

Rasca, A.; Oran, R.; anyi, M.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL060990

parker solar probe; Solar Probe Plus

THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE

Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfv\ enic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a ...

Klein, K.; Howes, G.; TenBarge, J.;

Published by: The Astrophysical Journal      Published on: 08/2014

YEAR: 2014     DOI: 10.1088/2041-8205/790/2/L20

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; turbulence; waves

Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation

The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun\textquoterights surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1)\ O ...

McComas, D.; Alexander, N.; Angold, N.; Bale, S.; Beebe, C.; Birdwell, B.; Boyle, M.; Burgum, J.; Burnham, J.; Christian, E.; Cook, W.; Cooper, S.; Cummings, A.; Davis, A.; Desai, M.; Dickinson, J.; Dirks, G.; Do, D.; Fox, N.; Giacalone, J.; Gold, R.; Gurnee, R.; Hayes, J.; Hill, M.; Kasper, J.; Kecman, B.; Klemic, J.; Krimigis, S.; Labrador, A.; Layman, R.; Leske, R.; Livi, S.; Matthaeus, W.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Nelson, K.; Parker, C.; Rankin, J.; Roelof, E.; Schwadron, N.; Seifert, H.; Shuman, S.; Stokes, M.; Stone, E.; Vandegriff, J.; Velli, M.; von Rosenvinge, T.; Weidner, S.; Wiedenbeck, M.; Wilson, P.;

Published by: Space Science Reviews      Published on: 07/2014

YEAR: 2014     DOI: 10.1007/s11214-014-0059-1

CMEs; Corona; ISIS; Parker Data Used; Particle acceleration; SEPs; Solar energetic particles; Solar Probe Plus

VALIDITY OF THE TAYLOR HYPOTHESIS FOR LINEAR KINETIC WAVES IN THE WEAKLY COLLISIONAL SOLAR WIND

The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis\textemdashthat temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame\textemdashis often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such ...

Howes, G.; Klein, K.; TenBarge, J.;

Published by: The Astrophysical Journal      Published on: 07/2014

YEAR: 2014     DOI: 10.1088/0004-637X/789/2/106

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Solar Probe Plus; Solar wind; turbulence

Cross-comparison of spacecraft-environment interaction model predictions applied to Solar Probe Plus near perihelion

Five spacecraft-plasma models are used to simulate the interaction of a simplified geometry Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. By considering similarities and differences between results obtained with different numerical approaches under well defined conditions, the consistency and validity of our models can be assessed. The impact on model predictions of physical effects of importance in the SPP mission is also considered by comparing re ...

Marchand, R.; Miyake, Y.; Usui, H.; Deca, J.; Lapenta, G.; elez, J.; Ergun, R.; Sturner, A.; enot, V.; Hilgers, A.; Markidis, S.;

Published by: Physics of Plasmas      Published on: 06/2014

YEAR: 2014     DOI: 10.1063/1.4882439

Parker Data Used; parker solar probe; Solar Probe Plus

INBOUND WAVES IN THE SOLAR CORONA: A DIRECT INDICATOR OF ALFV\ EN SURFACE LOCATION

The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary\textemdashthe Alfv\ en surface\textemdashthat marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfv\ en surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfv\ en speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar co ...

Deforest, C.; Howard, T.; McComas, D.;

Published by: The Astrophysical Journal      Published on: 06/2014

YEAR: 2014     DOI: 10.1088/0004-637X/787/2/124

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: fundamental parameters; techniques: image processing

A semi-analytical foreshock model for energetic storm particle events inside 1 AU

We have constructed a semi-analytical model of the energetic-ion foreshock of a CME-driven coronal/interplanetary shock wave responsible for the acceleration of large solar energetic particle (SEP) events. The model is based on the analytical model of diffusive shock acceleration of Bell (1978), appended with a temporal dependence of the cut-off momentum of the energetic particles accelerated at the shock, derived from the theory. Parameters of the model are re-calibrated using a fully time-dependent self-consistent simul ...

Vainio, Rami; önni, Arttu; Battarbee, Markus; Koskinen, Hannu; Afanasiev, Alexandr; Laitinen, Timo;

Published by: Journal of Space Weather and Space Climate      Published on: 02/2014

YEAR: 2014     DOI: 10.1051/swsc/2014005

Energetic particle; Heliosphere; Interplanetary medium; parker solar probe; SEP; Shocks; Solar Probe Plus

An analysis of Alfv\ en radius based on sunspot number from 1749 to today

The Solar Probe Plus mission now under construction will provide the first in situ measurements from inside the orbit of Mercury. The most critical part of that mission will be measurements from inside the Alfv\ en radius where the Alfv\ en speed exceeds the wind speed and the physics of the solar wind changes fundamentally due, in part, to the multidirectionality of wave propagation. In this region waves from both sunward and antisunward of the observation point can effect the local dynamics including the turbulent evolu ...

Goelzer, Molly; Schwadron, Nathan; Smith, Charles;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013JA019420

interplanetary magnetic fields; parker solar probe; Solar Probe Plus; Solar wind; solar wind acceleration

The neutron, gamma-ray, X-ray spectrometer (NGXS): A compact instrument for making combined measurements of neutrons, gamma-rays, and X-rays

The Neutron, Gamma ray, and X-ray Spectrometer (NGXS) is a compact instrument designed to detect neutrons, gamma-rays, and hard X-rays. The original goal of NGXS was to detect and characterize neutrons, gamma-rays, and X-rays from the Sun as part of the Solar Probe Plus mission in order to provide direct insight into particle acceleration, magnetic reconnection, and cross-field transport processes that take place near the Sun. Based on high-energy neutron detections from prompt solar flares, it is estimated that the NGXS ...

Lawrence, David; Feldman, William; Gold, Robert; Goldsten, John; McNutt, Ralph;

Published by: Acta Astronautica      Published on: 01/2014

YEAR: 2014     DOI: 10.1016/j.actaastro.2012.06.017

parker solar probe; Solar Probe Plus

2013

SPIE ProceedingsDevelopment and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus

Korendyke, Clarence; Vourlidas, Angelos; Plunkett, Simon; Howard, Russell; Wang, Dennis; Marshall, Cheryl; Waczynski, Augustyn; Janesick, James; Elliott, Thomas; Tun, Samuel; Tower, John; Grygon, Mark; Keller, David; Clifford, Gregory;

Published by:       Published on: 10/2013

YEAR: 2013     DOI: 10.1117/12.2027655

APS; CMOS; Radiation; Solar Orbiter; Solar Probe Plus

SPIE ProceedingsSeeing the corona with the solar probe plus mission: the wide-field imager for solar probe+ (WISPR)

Vourlidas, Angelos; Howard, Russell; Plunkett, Simon; Korendyke, Clarence; Carter, Michael; Thernisien, Arnaud; Chua, Damien; Van Duyne, Peter; Socker, Dennis; Linton, Mark; Liewer, Paulett; Hall, Jeffrey; Morrill, Jeff; DeJong, Eric; Mikic, Zoran; Rochus, Pierre; Bothmer, Volker; Rodman, Jens; Lamy, Philippe;

Published by:       Published on: 09/2013

YEAR: 2013     DOI: 10.1117/12.2027508

Heliospheric imager; Imaging; Parker Data Used; Solar corona; Solar Probe Plus; Solar wind; Thomson scattering

AIP Conference ProceedingsA view from the ground: Next generation instrumentation for solar and heliospheric physics

The solar and space physics community has recently completed its second decadal survey under the auspices of the National Research Council. An integrated strategy for ground and space based studies of the Sun and space physics has been recommended, with specific recommendations made regarding new instrumentation, programs, and facilities. The ground based component of these recommendations is briefly reviewed here: the Advanced Technology Solar Telescope (ATST), the Frequency Agile Solar Radiotelescope (FASR), and the Cor ...

Bastian, T.;

Published by:       Published on: 07/2013

YEAR: 2013     DOI: 10.1063/1.4811080

95.55.Cs; 95.55.Ev; 95.55.Jz; 95.75.Hi; astronomical polarimetry; Ground-based ultraviolet optical and infrared telescopes; parker solar probe; photosphere; radioastronomy; radiotelescopes; Solar instruments; Solar Probe Plus; Solar wind

AIP Conference ProceedingsTemperature anisotropy instabilities; combining plasma and magnetic field data at different distances from the Sun

We present a new data analysis method enabling the observation of magnetic field fluctuations associated with temperature anisotropy instabilities using the Ulysses spacecraft. The movement of the spacecraft away from the Sun causes the observed plasma conditions, turbulent fluctuation amplitude, magnetic field strength and important physical scales to change. We normalize wavelet power spectra of the magnetic field using local values for the proton gyroscale and large scale magnetic field fluctuation amplitude to remove ...

Wicks, Robert; Matteini, Lorenzo; Horbury, Timothy; Hellinger, Petr; Roberts, Aaron;

Published by:       Published on: 07/2013

YEAR: 2013     DOI: 10.1063/1.4811048

96.50.Ci; 96.60.Hv; 96.60.Tf; 96.60.Vg; astrophysical plasma; data analysis; parker solar probe; plasma instability; solar magnetism; Solar Probe Plus; solar spectra; Solar wind; Solar wind plasma; sources of solar wind; wavelet transforms

Evolution of the Solar Flare Energetic Electrons in the Inhomogeneous Inner Heliosphere

Solar flare accelerated electrons escaping into the interplanetary space and seen as type III solar radio bursts are often detected near the Earth. Using numerical simulations we consider the evolution of energetic electron spectrum in the inner heliosphere and near the Earth. The role of Langmuir wave generation, heliospheric plasma density fluctuations, and expansion of magnetic field lines on the electron peak flux and fluence spectra is studied to predict the electron properties as could be observed by Solar Orbiter a ...

Reid, Hamish; Kontar, Eduard;

Published by: Solar Physics      Published on: 07/2013

YEAR: 2013     DOI: 10.1007/s11207-012-0013-x

Astrophysics - Solar and Stellar Astrophysics; dynamics; Energetic particles; flares; parker solar probe; plasma; propagation; Radio bursts; Solar Probe Plus; Solar wind; type III; waves

2012

Solar wind plasma interaction with solar probe plus spacecraft

3-D PIC (Particle In Cell) simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface). We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a s ...

Guillemant, S.; enot, V.; elez, J.-C.; Ergun, R.; Louarn, P.;

Published by: Annales Geophysicae      Published on: 07/2012

YEAR: 2012     DOI: 10.5194/angeo-30-1075-2012

Parker Data Used; Solar Probe Plus

Estimation of the solar flare neutron worst-case fluxes and fluences for missions traveling close to the Sun

A method to estimate the total fluence of solar flare neutrons at a spacecraft traveling in the innermost part of the heliosphere (at heliocentric radial distances of \<1 AU) is presented. The results of the neutron production and emissivity codes of Hua and Lingenfelter (1987a, 1987b) scaled to one of the largest solar neutron events ever observed at the Earth are used to derive a conservative estimate of the energy spectrum of neutrons emitted from the Sun after a large solar flare. By taking into account the surviva ...

Lario, D.;

Published by: Space Weather      Published on: 03/2012

YEAR: 2012     DOI: 10.1029/2011SW000732

and Astronomy: Flares; and Astronomy: General or miscellaneous; and Astronomy: X-rays; and neutrinos; Astrophysics; gamma rays; parker solar probe; Solar Physics; Solar Probe Plus

Short wavelength electromagnetic perturbations excited near the Solar Probe Plus spacecraft in the inner heliosphere: 2.5D hybrid modeling

A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was ...

Lipatov, Alexander; Sittler, Edward; Hartle, Richard; Cooper, John;

Published by: Planetary and Space Science      Published on: 03/2012

YEAR: 2012     DOI: 10.1016/j.pss.2011.12.008

Alfv\ en waves; Induced magnetospheres; Magnetic barrier; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Spacecraft; Whistlers

A simple 3D plasma instrument with an electrically adjustable geometric factor for space research

We report on the design and experimental verification of a novel charged particle detector and an energy spectrometer with variable geometric factor functionality. Charged particle populations in the inner heliosphere create fluxes that can vary over many orders of magnitude in flux intensity. Space missions that plan to observe plasma fluxes, for example when travelling close to the Sun or to a planetary magnetosphere, require rapid particle measurements over the full three-dimensional velocity distribution. Traditionall ...

Rohner, U; Saul, L; Wurz, P; Allegrini, F; Scheer, J; McComas, D;

Published by: Measurement Science and Technology      Published on: 02/2012

YEAR: 2012     DOI: 10.1088/0957-0233/23/2/025901

parker solar probe; Solar Probe Plus

Thermal radiative properties of carbon materials under high temperature and vacuum ultra-violet (VUV) radiation for the heat shield of the Solar Probe Plus mission

The Solar Probe Plus (SP+) mission will approach the Sun as close as 9.5 solar radii in order to understand the origin of the solar corona heating and the acceleration of the solar wind. Submitted to such extreme environmental conditions, a thermal protection system is considered to protect the payload of the SP+ spacecraft. Carbon-based materials are good candidate to fulfill this role and critical point remains the equilibrium temperature reached at perihelion by the heat shield. In this paper, experimental results obta ...

Balat-Pichelin, M.; Eck, J.; Sans, J.L.;

Published by: Applied Surface Science      Published on: 01/2012

YEAR: 2012     DOI: 10.1016/j.apsusc.2011.10.142

Carbon material; High temperature; Ion etching; Parker Data Used; Solar Probe Plus; Thermal radiative properties; VUV radiation

2011

Estimation of solar energetic proton mission-integrated fluences and peak intensities for missions traveling close to the Sun

A method to estimate both solar energetic particle mission-integrated fluences and solar energetic particle peak intensities for missions traveling through the innermost part of the heliosphere (r \< 1 AU) is presented. By using (1) an extensive data set of particle intensities measured at 1 AU over the last three solar cycles, (2) successive launch dates for the mission traveling close to the Sun over the time interval spanned by our data set, and (3) appropriate radial dependences to extrapolate fluences and peak int ...

Lario, D.; Decker, R.;

Published by: Space Weather      Published on: 11/2011

YEAR: 2011     DOI: 10.1029/2011SW000708

Interplanetary Physics: Energetic particles (7514); Interplanetary Physics: Instruments and techniques; Interplanetary Physics: Solar cycle variations (7536); Parker Data Used; parker solar probe; Solar Probe Plus; space weather

CORONAL PLUMES IN THE FAST SOLAR WIND

The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfv\ en waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of t ...

Velli, Marco; Lionello, Roberto; Linker, Jon; c, Zoran;

Published by: The Astrophysical Journal      Published on: 07/2011

YEAR: 2011     DOI: 10.1088/0004-637X/736/1/32

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Experimental study of carbon materials behavior under high temperature and VUV radiation: Application to Solar Probe+ heat shield

The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the ...

Eck, J.; Sans, J.-L.; Balat-Pichelin, M.;

Published by: Applied Surface Science      Published on: 02/2011

YEAR: 2011     DOI: 10.1016/j.apsusc.2010.10.139

Parker Data Used; parker solar probe; Solar Probe Plus

2010

Solar Probe Plus: Mission design challenges and trades

NASA plans to launch the first mission to the Sun, named Solar Probe Plus, as early as 2015, after a comprehensive feasibility study that significantly changed the original Solar Probe mission concept. The original Solar Probe mission concept, based on a Jupiter gravity assist trajectory, was no longer feasible under the new guidelines given to the mission. A complete redesign of the mission was required, which called for developing alternative trajectories that excluded a flyby of Jupiter. Without the very powerful gravi ...

Guo, Yanping;

Published by: Acta Astronautica      Published on: 11/2010

YEAR: 2010     DOI: 10.1016/j.actaastro.2010.06.007

Parker Data Used; parker solar probe; Solar Probe Plus

Scaling the energy conversion rate from magnetic field reconnection to different bodies

Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic ...

Mozer, F.; Hull, A.;

Published by: Physics of Plasmas      Published on: 10/2010

YEAR: 2010     DOI: 10.1063/1.3504224

95.30.Qd; astrophysical plasma; magnetic reconnection; parker solar probe; planetary magnetism; plasma magnetohydrodynamics; solar flares; solar magnetism; Solar Probe Plus

Spacecraft charging and ion wake formation in the near-Sun environment

A three-dimensional, self-consistent code is employed to solve for the static potential structure surrounding a spacecraft in a high photoelectron environment. The numerical solutions show that, under certain conditions, a spacecraft can take on a negative potential in spite of strong photoelectron currents. The negative potential is due to an electrostatic barrier near the surface of the spacecraft that can reflect a large fraction of the photoelectron flux back to the spacecraft. This electrostatic barrier forms if (1) ...

Ergun, R.; Malaspina, D.; Bale, S.; McFadden, J.; Larson, D.; Mozer, F.; Meyer-Vernet, N.; Maksimovic, M.; Kellogg, P.; Wygant, J.;

Published by: Physics of Plasmas      Published on: 07/2010

YEAR: 2010     DOI: 10.1063/1.3457484

52.25.-b; 52.30.-q; 94.05.Jq; parker solar probe; plasma density; plasma flow; Solar Probe Plus; space vehicles; spacecraft charging; Spacecraft sheaths wakes and charging; static electrification

1986

Sapphire Photocurrent Sources and Their Impact on RAM Upset

This paper reports on the transient photocurrent measurements made with test structures fabricated on sapphire substrates, and the computer simulation model which was developed to use the test results. Predictions of logic upset for a 4 K RAM CMOS/SOS compared with measured upset rates showed agreement within a factor of 2. The test structure results indicate that the sapphire photoconductance is 6.3 x 10 to the -19th mhos/(rads/s)-micron. The use of this value in the present simulation model will increase the predicted u ...

Brucker, G.; Herbert, J.; Stewart, R.; Plus, D.;

Published by: IEEE Transactions on Nuclear Science      Published on: 12/1986

YEAR: 1986     DOI: 10.1109/TNS.1986.4334608

CMOS; Electric Current; Electronics and Electrical Engineering; Logic Circuits; parker solar probe; Photoconductivity; Radiation Damage; Random Access Memory; Sapphire; Solar Probe Plus; Sos (Semiconductors)



  1      2      3      4      5