Notice:
|
Found 1459 entries in the Bibliography.
Showing entries from 201 through 250
2022 |
We analyze the micro-kinetic stability of the electron strahl in the solar wind depending on heliocentric distance. The oblique fast- magnetosonic/whistler (FM/W) instability has emerged in the literature as a key candidate mechanism for the effective scattering of the electron strahl into the electron halo population. Using data from the Parker Solar Probe (PSP) and Helios, we compare the measured strahl properties with the analytical thresholds for the oblique FM/W instability in the low- and high-\ensuremath\beta $_\ensur ... Jeong, Seong-Yeop; Abraham, Joel; Verscharen, Daniel; Ber\vci\vc, Laura; Stansby, David; Nicolaou, Georgios; Owen, Christopher; Wicks, Robert; Fazakerley, Andrew; Rueda, Jeffersson; Bakrania, Mayur; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac4dff Parker Data Used; 1534; 1544; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
We analyze the micro-kinetic stability of the electron strahl in the solar wind depending on heliocentric distance. The oblique fast- magnetosonic/whistler (FM/W) instability has emerged in the literature as a key candidate mechanism for the effective scattering of the electron strahl into the electron halo population. Using data from the Parker Solar Probe (PSP) and Helios, we compare the measured strahl properties with the analytical thresholds for the oblique FM/W instability in the low- and high-\ensuremath\beta $_\ensur ... Jeong, Seong-Yeop; Abraham, Joel; Verscharen, Daniel; Ber\vci\vc, Laura; Stansby, David; Nicolaou, Georgios; Owen, Christopher; Wicks, Robert; Fazakerley, Andrew; Rueda, Jeffersson; Bakrania, Mayur; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac4dff Parker Data Used; 1534; 1544; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Flux Rope Merging and the Structure of Switchbacks in the Solar Wind A major discovery of Parker Solar Probe (PSP) was the presence of large numbers of localized increases in the radial solar wind speed and associated sharp deflections of the magnetic field- switchbacks (SBs). A possible generation mechanism of SBs is through magnetic reconnection between open and closed magnetic flux near the solar surface, termed interchange reconnection, that leads to the ejection of flux ropes (FRs) into the solar wind. Observations also suggest that SBs undergo merging, consistent with an FR picture of t ... Agapitov, O.~V.; Drake, J.~F.; Swisdak, M.; Bale, S.~D.; Horbury, T.~S.; Kasper, J.~C.; MacDowall, R.~J.; Mozer, F.~S.; Phan, T.~D.; Pulupa, M.; Raouafi, N.~E.; Velli, M.; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac4016 Parker Data Used; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Flux Rope Merging and the Structure of Switchbacks in the Solar Wind A major discovery of Parker Solar Probe (PSP) was the presence of large numbers of localized increases in the radial solar wind speed and associated sharp deflections of the magnetic field- switchbacks (SBs). A possible generation mechanism of SBs is through magnetic reconnection between open and closed magnetic flux near the solar surface, termed interchange reconnection, that leads to the ejection of flux ropes (FRs) into the solar wind. Observations also suggest that SBs undergo merging, consistent with an FR picture of t ... Agapitov, O.~V.; Drake, J.~F.; Swisdak, M.; Bale, S.~D.; Horbury, T.~S.; Kasper, J.~C.; MacDowall, R.~J.; Mozer, F.~S.; Phan, T.~D.; Pulupa, M.; Raouafi, N.~E.; Velli, M.; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac4016 Parker Data Used; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Flux Rope Merging and the Structure of Switchbacks in the Solar Wind A major discovery of Parker Solar Probe (PSP) was the presence of large numbers of localized increases in the radial solar wind speed and associated sharp deflections of the magnetic field- switchbacks (SBs). A possible generation mechanism of SBs is through magnetic reconnection between open and closed magnetic flux near the solar surface, termed interchange reconnection, that leads to the ejection of flux ropes (FRs) into the solar wind. Observations also suggest that SBs undergo merging, consistent with an FR picture of t ... Agapitov, O.~V.; Drake, J.~F.; Swisdak, M.; Bale, S.~D.; Horbury, T.~S.; Kasper, J.~C.; MacDowall, R.~J.; Mozer, F.~S.; Phan, T.~D.; Pulupa, M.; Raouafi, N.~E.; Velli, M.; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac4016 Parker Data Used; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
At the end of 2020 September, the Parker Solar Probe (PSP) and BepiColombo were radially aligned: PSP was orbiting near 0.17 au and BepiColombo near 0.6 au. This geometry is of particular interest for investigating the evolution of solar wind properties at different heliocentric distances by observing the same solar wind plasma parcels. In this work, we use the magnetic field observations from both spacecraft to characterize both the topology of the magnetic field at different heliocentric distances (scalings, high-order sta ... Alberti, Tommaso; Milillo, Anna; Heyner, Daniel; Hadid, Lina; Auster, Hans-Ulrich; Richter, Ingo; Narita, Yasuhito; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac478d Parker Data Used; 1534; 994; 1964; 830 |
In the lower solar coronal regions where the magnetic field is dominant, the Alfv\ en speed is much higher than the wind speed. In contrast, the near-Earth solar wind is strongly super- Alfv\ enic, i.e., the wind speed greatly exceeds the Alfv\ en speed. The transition between these regimes is classically described as the Alfv\ en point but may in fact occur in a distributed Alfv\ en critical region. NASA s Parker Solar Probe (PSP) mission has entered this region, as it follows a series of orbits that gradually approach ... Bandyopadhyay, R.; Matthaeus, W.~H.; McComas, D.~J.; Chhiber, R.; Usmanov, A.~V.; Huang, J.; Livi, R.; Larson, D.~E.; Kasper, J.~C.; Case, A.~W.; Stevens, M.; Whittlesey, P.; Romeo, O.~M.; Bale, S.~D.; Bonnell, J.~W.; de Wit, Dudok; Goetz, K.; Harvey, P.~R.; MacDowall, R.~J.; Malaspina, D.~M.; Pulupa, M.; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac4a5c Parker Data Used; 1544; 1534; 824; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
In the lower solar coronal regions where the magnetic field is dominant, the Alfv\ en speed is much higher than the wind speed. In contrast, the near-Earth solar wind is strongly super- Alfv\ enic, i.e., the wind speed greatly exceeds the Alfv\ en speed. The transition between these regimes is classically described as the Alfv\ en point but may in fact occur in a distributed Alfv\ en critical region. NASA s Parker Solar Probe (PSP) mission has entered this region, as it follows a series of orbits that gradually approach ... Bandyopadhyay, R.; Matthaeus, W.~H.; McComas, D.~J.; Chhiber, R.; Usmanov, A.~V.; Huang, J.; Livi, R.; Larson, D.~E.; Kasper, J.~C.; Case, A.~W.; Stevens, M.; Whittlesey, P.; Romeo, O.~M.; Bale, S.~D.; Bonnell, J.~W.; de Wit, Dudok; Goetz, K.; Harvey, P.~R.; MacDowall, R.~J.; Malaspina, D.~M.; Pulupa, M.; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac4a5c Parker Data Used; 1544; 1534; 824; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
In the lower solar coronal regions where the magnetic field is dominant, the Alfv\ en speed is much higher than the wind speed. In contrast, the near-Earth solar wind is strongly super- Alfv\ enic, i.e., the wind speed greatly exceeds the Alfv\ en speed. The transition between these regimes is classically described as the Alfv\ en point but may in fact occur in a distributed Alfv\ en critical region. NASA s Parker Solar Probe (PSP) mission has entered this region, as it follows a series of orbits that gradually approach ... Bandyopadhyay, R.; Matthaeus, W.~H.; McComas, D.~J.; Chhiber, R.; Usmanov, A.~V.; Huang, J.; Livi, R.; Larson, D.~E.; Kasper, J.~C.; Case, A.~W.; Stevens, M.; Whittlesey, P.; Romeo, O.~M.; Bale, S.~D.; Bonnell, J.~W.; de Wit, Dudok; Goetz, K.; Harvey, P.~R.; MacDowall, R.~J.; Malaspina, D.~M.; Pulupa, M.; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac4a5c Parker Data Used; 1544; 1534; 824; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
In the lower solar coronal regions where the magnetic field is dominant, the Alfv\ en speed is much higher than the wind speed. In contrast, the near-Earth solar wind is strongly super- Alfv\ enic, i.e., the wind speed greatly exceeds the Alfv\ en speed. The transition between these regimes is classically described as the Alfv\ en point but may in fact occur in a distributed Alfv\ en critical region. NASA s Parker Solar Probe (PSP) mission has entered this region, as it follows a series of orbits that gradually approach ... Bandyopadhyay, R.; Matthaeus, W.~H.; McComas, D.~J.; Chhiber, R.; Usmanov, A.~V.; Huang, J.; Livi, R.; Larson, D.~E.; Kasper, J.~C.; Case, A.~W.; Stevens, M.; Whittlesey, P.; Romeo, O.~M.; Bale, S.~D.; Bonnell, J.~W.; de Wit, Dudok; Goetz, K.; Harvey, P.~R.; MacDowall, R.~J.; Malaspina, D.~M.; Pulupa, M.; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac4a5c Parker Data Used; 1544; 1534; 824; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
In this paper we examine a low-energy solar energetic particle (SEP) event observed by IS\ensuremath\odotIS s Energetic Particle Instrument-Low (EPI-Lo) inside 0.18 au on 2020 September 30. This small SEP event has a very interesting time profile and ion composition. Our results show that the maximum energy and peak in intensity are observed mainly along the open radial magnetic field. The event shows velocity dispersion, and strong particle anisotropies are observed throughout the event, showing that more particles are stre ... Getachew, T.; McComas, D.~J.; Joyce, C.~J.; Palmerio, E.; Christian, E.~R.; Cohen, C.~M.~S.; Desai, M.~I.; Giacalone, J.; Hill, M.~E.; Matthaeus, W.~H.; McNutt, R.~L.; Mitchell, D.~G.; Mitchell, J.~G.; Rankin, J.~S.; Roelof, E.~C.; Schwadron, N.~A.; Szalay, J.~R.; Zank, G.~P.; Zhao, L.; Lynch, B.~J.; Phan, T.~D.; Bale, S.~D.; Whittlesey, P.~L.; Kasper, J.~C.; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac408f Parker Data Used; 1491; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
In this paper we examine a low-energy solar energetic particle (SEP) event observed by IS\ensuremath\odotIS s Energetic Particle Instrument-Low (EPI-Lo) inside 0.18 au on 2020 September 30. This small SEP event has a very interesting time profile and ion composition. Our results show that the maximum energy and peak in intensity are observed mainly along the open radial magnetic field. The event shows velocity dispersion, and strong particle anisotropies are observed throughout the event, showing that more particles are stre ... Getachew, T.; McComas, D.~J.; Joyce, C.~J.; Palmerio, E.; Christian, E.~R.; Cohen, C.~M.~S.; Desai, M.~I.; Giacalone, J.; Hill, M.~E.; Matthaeus, W.~H.; McNutt, R.~L.; Mitchell, D.~G.; Mitchell, J.~G.; Rankin, J.~S.; Roelof, E.~C.; Schwadron, N.~A.; Szalay, J.~R.; Zank, G.~P.; Zhao, L.; Lynch, B.~J.; Phan, T.~D.; Bale, S.~D.; Whittlesey, P.~L.; Kasper, J.~C.; Published by: \apj Published on: feb YEAR: 2022   DOI: 10.3847/1538-4357/ac408f Parker Data Used; 1491; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Observations of cross scale energy transfer in the inner heliosphere by Parker Solar Probe The solar wind, a continuous flow of plasma from the sun, not only shapes the near Earth space environment but also serves as a natural laboratory to study plasma turbulence in conditions that are not achievable in the lab. Starting with the Mariners, for more than five decades, multiple space missions have enabled in- depth studies of solar wind turbulence. Parker Solar Probe (PSP) was launched to explore the origins and evolution of the solar wind. With its state-of-the-art instrumentation and unprecedented close approache ... Parashar, Tulasi; Matthaeus, William; Published by: Reviews of Modern Plasma Physics Published on: dec YEAR: 2022   DOI: 10.1007/s41614-022-00097-x Parker Data Used; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Thermal Energy Budget of Electrons in the Inner Heliosphere: Parker Solar Probe Observations We present an observational analysis of the electron thermal energy budget using data from Parker Solar Probe. We use the macroscopic moments, obtained from our fits to the measured electron distribution function, to evaluate the thermal energy budget based on the second moment of the Boltzmann equation. We separate contributions to the overall budget from reversible and irreversible processes. We find that an irreversible thermal energy source must be present in the inner heliosphere over the heliocentric distance range fro ... Abraham, Joel; Verscharen, Daniel; Wicks, Robert; Rueda, Jeffersson; Owen, Christopher; Nicolaou, Georgios; Jeong, Seong-Yeop; Published by: \apj Published on: dec YEAR: 2022   DOI: 10.3847/1538-4357/ac9fd8 Parker Data Used; The Sun; Solar wind; Heliosphere; Plasma physics; 1693; 1534; 711; 2089; Astrophysics - Solar and Stellar Astrophysics; Physics - Geophysics; Physics - Plasma Physics; Physics - Space Physics |
Thermal Energy Budget of Electrons in the Inner Heliosphere: Parker Solar Probe Observations We present an observational analysis of the electron thermal energy budget using data from Parker Solar Probe. We use the macroscopic moments, obtained from our fits to the measured electron distribution function, to evaluate the thermal energy budget based on the second moment of the Boltzmann equation. We separate contributions to the overall budget from reversible and irreversible processes. We find that an irreversible thermal energy source must be present in the inner heliosphere over the heliocentric distance range fro ... Abraham, Joel; Verscharen, Daniel; Wicks, Robert; Rueda, Jeffersson; Owen, Christopher; Nicolaou, Georgios; Jeong, Seong-Yeop; Published by: \apj Published on: dec YEAR: 2022   DOI: 10.3847/1538-4357/ac9fd8 Parker Data Used; The Sun; Solar wind; Heliosphere; Plasma physics; 1693; 1534; 711; 2089; Astrophysics - Solar and Stellar Astrophysics; Physics - Geophysics; Physics - Plasma Physics; Physics - Space Physics |
We present a 2D kinematic model to study the acceleration of solar energetic particles (SEPs) at a shock driven by a coronal mass ejection. The shock is assumed to be spherical about an origin that is offset from the center of the Sun. This leads to a spatial and temporal evolution of the angle between the magnetic field and the shock-normal direction (\ensuremath\theta $_ Bn $) as it propagates through the Parker spiral magnetic field from the lower corona to 1 au. We find that the high-energy SEP intensity varies significa ... Chen, Xiaohang; Giacalone, Joe; Guo, Fan; Published by: \apj Published on: dec YEAR: 2022   DOI: 10.3847/1538-4357/ac9f43 Parker Data Used; Solar energetic particles; Solar coronal mass ejection shocks; Interplanetary shocks; 1491; 1997; 829; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Statistical classification of the Helios solar wind observations into several populations sorted by bulk speed has revealed an outward acceleration of the wind. The faster the wind, the smaller this acceleration in the 0.3-1 au radial range. In this paper, we show that recent measurements from the Parker Solar Probe (PSP) are compatible with an extension closer to the Sun of the latter Helios classification. For instance, the well-established bulk speed/proton temperature (u, T $_p$) correlation and bulk speed/electron tempe ... Dakeyo, Jean-Baptiste; Maksimovic, Milan; emoulin, Pascal; Halekas, Jasper; Stevens, Michael; Published by: \apj Published on: dec YEAR: 2022   DOI: 10.3847/1538-4357/ac9b14 Parker Data Used; Solar wind; Interplanetary particle acceleration; Slow solar wind; Astronomy data modeling; 1534; 826; 1873; 1859 |
Context. The opacity of the ionosphere prevents comprehensive Earth- based surveys of low frequency \ensuremath\nu \ensuremath\lesssim 10 MHz astrophysical radio emissions. The limited available data in this frequency regime show a downturn in the mean sky brightness at \ensuremath\nu \ensuremath\lesssim 3 MHz in a divergence from the synchrotron emission power-law that is observed at higher frequencies. The turning over of the spectrum coincides with a shift in the region of maximum brightness from the Galactic plane to the ... Page, B.; Bassett, N.; Lecacheux, A.; Pulupa, M.; Rapetti, D.; Bale, S.~D.; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202244621 Parker Data Used; radio continuum: ISM; Galaxy: disk; opacity; methods: data analysis |
Context. The opacity of the ionosphere prevents comprehensive Earth- based surveys of low frequency \ensuremath\nu \ensuremath\lesssim 10 MHz astrophysical radio emissions. The limited available data in this frequency regime show a downturn in the mean sky brightness at \ensuremath\nu \ensuremath\lesssim 3 MHz in a divergence from the synchrotron emission power-law that is observed at higher frequencies. The turning over of the spectrum coincides with a shift in the region of maximum brightness from the Galactic plane to the ... Page, B.; Bassett, N.; Lecacheux, A.; Pulupa, M.; Rapetti, D.; Bale, S.~D.; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202244621 Parker Data Used; radio continuum: ISM; Galaxy: disk; opacity; methods: data analysis |
Switchbacks — abrupt reversals of the magnetic field within the solar wind — have been ubiquitously observed by Parker Solar Probe (PSP). Their origin, whether from processes near the solar surface or within the solar wind itself, remains under debate, and likely has key implications for solar wind heating and acceleration. Here, using three-dimensional expanding box simulations, we examine the properties of switchbacks arising from the evolution of outwards-propagating Alfv\ en waves in the expanding solar wind ... Johnston, Zade; Squire, Jonathan; Mallet, Alfred; Meyrand, Romain; Published by: Physics of Plasmas Published on: dec YEAR: 2022   DOI: 10.1063/5.0133296 Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
We study the radial evolution, from 0.1 AU to the Earth, of a homogeneous recurrent fast wind, coming from the same source on the Sun, by means of new measurements by both Solar Orbiter and Parker Solar Probe. With respect to previous radial studies, we extend, for the first time, the analysis of a recurrent fast stream at distances never reached prior to the Parker Solar Probe mission. Confirming previous findings, the observations show: (i) a decrease in the radial trend of the proton density that is slower than the one ex ... Perrone, D.; Perri, S.; Bruno, R.; Stansby, D.; Amicis, R.; Jagarlamudi, V.~K.; Laker, R.; Toledo-Redondo, S.; Stawarz, J.~E.; Telloni, D.; De Marco, R.; Owen, C.~J.; Raines, J.~M.; Settino, A.; Lavraud, B.; Maksimovic, M.; Vaivads, A.; Phan, T.~D.; Fargette, N.; Louarn, P.; Zouganelis, I.; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202243989 |
We study the radial evolution, from 0.1 AU to the Earth, of a homogeneous recurrent fast wind, coming from the same source on the Sun, by means of new measurements by both Solar Orbiter and Parker Solar Probe. With respect to previous radial studies, we extend, for the first time, the analysis of a recurrent fast stream at distances never reached prior to the Parker Solar Probe mission. Confirming previous findings, the observations show: (i) a decrease in the radial trend of the proton density that is slower than the one ex ... Perrone, D.; Perri, S.; Bruno, R.; Stansby, D.; Amicis, R.; Jagarlamudi, V.~K.; Laker, R.; Toledo-Redondo, S.; Stawarz, J.~E.; Telloni, D.; De Marco, R.; Owen, C.~J.; Raines, J.~M.; Settino, A.; Lavraud, B.; Maksimovic, M.; Vaivads, A.; Phan, T.~D.; Fargette, N.; Louarn, P.; Zouganelis, I.; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202243989 |
We study the radial evolution, from 0.1 AU to the Earth, of a homogeneous recurrent fast wind, coming from the same source on the Sun, by means of new measurements by both Solar Orbiter and Parker Solar Probe. With respect to previous radial studies, we extend, for the first time, the analysis of a recurrent fast stream at distances never reached prior to the Parker Solar Probe mission. Confirming previous findings, the observations show: (i) a decrease in the radial trend of the proton density that is slower than the one ex ... Perrone, D.; Perri, S.; Bruno, R.; Stansby, D.; Amicis, R.; Jagarlamudi, V.~K.; Laker, R.; Toledo-Redondo, S.; Stawarz, J.~E.; Telloni, D.; De Marco, R.; Owen, C.~J.; Raines, J.~M.; Settino, A.; Lavraud, B.; Maksimovic, M.; Vaivads, A.; Phan, T.~D.; Fargette, N.; Louarn, P.; Zouganelis, I.; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202243989 |
We study the radial evolution, from 0.1 AU to the Earth, of a homogeneous recurrent fast wind, coming from the same source on the Sun, by means of new measurements by both Solar Orbiter and Parker Solar Probe. With respect to previous radial studies, we extend, for the first time, the analysis of a recurrent fast stream at distances never reached prior to the Parker Solar Probe mission. Confirming previous findings, the observations show: (i) a decrease in the radial trend of the proton density that is slower than the one ex ... Perrone, D.; Perri, S.; Bruno, R.; Stansby, D.; Amicis, R.; Jagarlamudi, V.~K.; Laker, R.; Toledo-Redondo, S.; Stawarz, J.~E.; Telloni, D.; De Marco, R.; Owen, C.~J.; Raines, J.~M.; Settino, A.; Lavraud, B.; Maksimovic, M.; Vaivads, A.; Phan, T.~D.; Fargette, N.; Louarn, P.; Zouganelis, I.; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202243989 |
We study the radial evolution, from 0.1 AU to the Earth, of a homogeneous recurrent fast wind, coming from the same source on the Sun, by means of new measurements by both Solar Orbiter and Parker Solar Probe. With respect to previous radial studies, we extend, for the first time, the analysis of a recurrent fast stream at distances never reached prior to the Parker Solar Probe mission. Confirming previous findings, the observations show: (i) a decrease in the radial trend of the proton density that is slower than the one ex ... Perrone, D.; Perri, S.; Bruno, R.; Stansby, D.; Amicis, R.; Jagarlamudi, V.~K.; Laker, R.; Toledo-Redondo, S.; Stawarz, J.~E.; Telloni, D.; De Marco, R.; Owen, C.~J.; Raines, J.~M.; Settino, A.; Lavraud, B.; Maksimovic, M.; Vaivads, A.; Phan, T.~D.; Fargette, N.; Louarn, P.; Zouganelis, I.; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202243989 |
As a key feature, NASA s Parker Solar Probe (PSP) and ESA-NASA s Solar Orbiter (SO) missions cooperate to trace solar wind and transients from their sources on the Sun to the inner interplanetary space. The goal of this work is to accurately reconstruct the interplanetary Parker spiral and the connection between coronal features observed remotely by the Metis coronagraph on-board SO and those detected in situ by PSP at the time of the first PSP-SO quadrature of January 2021. We use the Reverse in situ and MHD Approach (RIMAP ... Biondo, Ruggero; Bemporad, Alessandro; Pagano, Paolo; Telloni, Daniele; Reale, Fabio; Romoli, Marco; Andretta, Vincenzo; Antonucci, Ester; Da Deppo, Vania; De Leo, Yara; Fineschi, Silvano; Heinzel, Petr; Moses, Daniel; Naletto, Giampiero; Nicolini, Gianalfredo; Spadaro, Daniele; Stangalini, Marco; Teriaca, Luca; Landini, Federico; Sasso, Clementina; Susino, Roberto; Jerse, Giovanna; Uslenghi, Michela; Pancrazzi, Maurizio; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202244535 Parker Data Used; magnetohydrodynamics (MHD); methods: numerical; Solar wind; Sun: heliosphere; Sun: corona; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
As a key feature, NASA s Parker Solar Probe (PSP) and ESA-NASA s Solar Orbiter (SO) missions cooperate to trace solar wind and transients from their sources on the Sun to the inner interplanetary space. The goal of this work is to accurately reconstruct the interplanetary Parker spiral and the connection between coronal features observed remotely by the Metis coronagraph on-board SO and those detected in situ by PSP at the time of the first PSP-SO quadrature of January 2021. We use the Reverse in situ and MHD Approach (RIMAP ... Biondo, Ruggero; Bemporad, Alessandro; Pagano, Paolo; Telloni, Daniele; Reale, Fabio; Romoli, Marco; Andretta, Vincenzo; Antonucci, Ester; Da Deppo, Vania; De Leo, Yara; Fineschi, Silvano; Heinzel, Petr; Moses, Daniel; Naletto, Giampiero; Nicolini, Gianalfredo; Spadaro, Daniele; Stangalini, Marco; Teriaca, Luca; Landini, Federico; Sasso, Clementina; Susino, Roberto; Jerse, Giovanna; Uslenghi, Michela; Pancrazzi, Maurizio; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202244535 Parker Data Used; magnetohydrodynamics (MHD); methods: numerical; Solar wind; Sun: heliosphere; Sun: corona; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
As a key feature, NASA s Parker Solar Probe (PSP) and ESA-NASA s Solar Orbiter (SO) missions cooperate to trace solar wind and transients from their sources on the Sun to the inner interplanetary space. The goal of this work is to accurately reconstruct the interplanetary Parker spiral and the connection between coronal features observed remotely by the Metis coronagraph on-board SO and those detected in situ by PSP at the time of the first PSP-SO quadrature of January 2021. We use the Reverse in situ and MHD Approach (RIMAP ... Biondo, Ruggero; Bemporad, Alessandro; Pagano, Paolo; Telloni, Daniele; Reale, Fabio; Romoli, Marco; Andretta, Vincenzo; Antonucci, Ester; Da Deppo, Vania; De Leo, Yara; Fineschi, Silvano; Heinzel, Petr; Moses, Daniel; Naletto, Giampiero; Nicolini, Gianalfredo; Spadaro, Daniele; Stangalini, Marco; Teriaca, Luca; Landini, Federico; Sasso, Clementina; Susino, Roberto; Jerse, Giovanna; Uslenghi, Michela; Pancrazzi, Maurizio; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202244535 Parker Data Used; magnetohydrodynamics (MHD); methods: numerical; Solar wind; Sun: heliosphere; Sun: corona; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Parker Solar Probe (PSP) and SolO data are utilized to investigate magnetic field intermittency in the solar wind (SW). Small-scale intermittency (20-100 d $_ i $) is observed to radially strengthen when methods relying on higher-order moments are considered (SF$_ q $; SDK), but no clear trend is observed at larger scales. However, lower-order moment-based methods (e.g., partial variance of increments; PVI) are deemed more appropriate for examining the evolution of the bulk of coherent structures (CSs), PVI \ensuremath\geq 3 ... Sioulas, Nikos; Huang, Zesen; Velli, Marco; Chhiber, Rohit; Cuesta, Manuel; Shi, Chen; Matthaeus, William; Bandyopadhyay, Riddhi; Vlahos, Loukas; Bowen, Trevor; Qudsi, Ramiz; Bale, Stuart; Owen, Christopher; Louarn, P.; Fedorov, A.; c, Milan; Stevens, Michael; Case, Anthony; Kasper, Justin; Larson, Davin; Pulupa, Marc; Livi, Roberto; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac7aa2 Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; Plasma astrophysics; Solar Physics; 1534; 830; 1964; 1544; 1261; 1476; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Parker Solar Probe (PSP) and SolO data are utilized to investigate magnetic field intermittency in the solar wind (SW). Small-scale intermittency (20-100 d $_ i $) is observed to radially strengthen when methods relying on higher-order moments are considered (SF$_ q $; SDK), but no clear trend is observed at larger scales. However, lower-order moment-based methods (e.g., partial variance of increments; PVI) are deemed more appropriate for examining the evolution of the bulk of coherent structures (CSs), PVI \ensuremath\geq 3 ... Sioulas, Nikos; Huang, Zesen; Velli, Marco; Chhiber, Rohit; Cuesta, Manuel; Shi, Chen; Matthaeus, William; Bandyopadhyay, Riddhi; Vlahos, Loukas; Bowen, Trevor; Qudsi, Ramiz; Bale, Stuart; Owen, Christopher; Louarn, P.; Fedorov, A.; c, Milan; Stevens, Michael; Case, Anthony; Kasper, Justin; Larson, Davin; Pulupa, Marc; Livi, Roberto; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac7aa2 Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; Plasma astrophysics; Solar Physics; 1534; 830; 1964; 1544; 1261; 1476; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Parker Solar Probe (PSP) and SolO data are utilized to investigate magnetic field intermittency in the solar wind (SW). Small-scale intermittency (20-100 d $_ i $) is observed to radially strengthen when methods relying on higher-order moments are considered (SF$_ q $; SDK), but no clear trend is observed at larger scales. However, lower-order moment-based methods (e.g., partial variance of increments; PVI) are deemed more appropriate for examining the evolution of the bulk of coherent structures (CSs), PVI \ensuremath\geq 3 ... Sioulas, Nikos; Huang, Zesen; Velli, Marco; Chhiber, Rohit; Cuesta, Manuel; Shi, Chen; Matthaeus, William; Bandyopadhyay, Riddhi; Vlahos, Loukas; Bowen, Trevor; Qudsi, Ramiz; Bale, Stuart; Owen, Christopher; Louarn, P.; Fedorov, A.; c, Milan; Stevens, Michael; Case, Anthony; Kasper, Justin; Larson, Davin; Pulupa, Marc; Livi, Roberto; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac7aa2 Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; Plasma astrophysics; Solar Physics; 1534; 830; 1964; 1544; 1261; 1476; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Parker Solar Probe (PSP) and SolO data are utilized to investigate magnetic field intermittency in the solar wind (SW). Small-scale intermittency (20-100 d $_ i $) is observed to radially strengthen when methods relying on higher-order moments are considered (SF$_ q $; SDK), but no clear trend is observed at larger scales. However, lower-order moment-based methods (e.g., partial variance of increments; PVI) are deemed more appropriate for examining the evolution of the bulk of coherent structures (CSs), PVI \ensuremath\geq 3 ... Sioulas, Nikos; Huang, Zesen; Velli, Marco; Chhiber, Rohit; Cuesta, Manuel; Shi, Chen; Matthaeus, William; Bandyopadhyay, Riddhi; Vlahos, Loukas; Bowen, Trevor; Qudsi, Ramiz; Bale, Stuart; Owen, Christopher; Louarn, P.; Fedorov, A.; c, Milan; Stevens, Michael; Case, Anthony; Kasper, Justin; Larson, Davin; Pulupa, Marc; Livi, Roberto; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac7aa2 Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; Plasma astrophysics; Solar Physics; 1534; 830; 1964; 1544; 1261; 1476; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Parker Solar Probe (PSP) and SolO data are utilized to investigate magnetic field intermittency in the solar wind (SW). Small-scale intermittency (20-100 d $_ i $) is observed to radially strengthen when methods relying on higher-order moments are considered (SF$_ q $; SDK), but no clear trend is observed at larger scales. However, lower-order moment-based methods (e.g., partial variance of increments; PVI) are deemed more appropriate for examining the evolution of the bulk of coherent structures (CSs), PVI \ensuremath\geq 3 ... Sioulas, Nikos; Huang, Zesen; Velli, Marco; Chhiber, Rohit; Cuesta, Manuel; Shi, Chen; Matthaeus, William; Bandyopadhyay, Riddhi; Vlahos, Loukas; Bowen, Trevor; Qudsi, Ramiz; Bale, Stuart; Owen, Christopher; Louarn, P.; Fedorov, A.; c, Milan; Stevens, Michael; Case, Anthony; Kasper, Justin; Larson, Davin; Pulupa, Marc; Livi, Roberto; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac7aa2 Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; Plasma astrophysics; Solar Physics; 1534; 830; 1964; 1544; 1261; 1476; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Parker Solar Probe (PSP) and SolO data are utilized to investigate magnetic field intermittency in the solar wind (SW). Small-scale intermittency (20-100 d $_ i $) is observed to radially strengthen when methods relying on higher-order moments are considered (SF$_ q $; SDK), but no clear trend is observed at larger scales. However, lower-order moment-based methods (e.g., partial variance of increments; PVI) are deemed more appropriate for examining the evolution of the bulk of coherent structures (CSs), PVI \ensuremath\geq 3 ... Sioulas, Nikos; Huang, Zesen; Velli, Marco; Chhiber, Rohit; Cuesta, Manuel; Shi, Chen; Matthaeus, William; Bandyopadhyay, Riddhi; Vlahos, Loukas; Bowen, Trevor; Qudsi, Ramiz; Bale, Stuart; Owen, Christopher; Louarn, P.; Fedorov, A.; c, Milan; Stevens, Michael; Case, Anthony; Kasper, Justin; Larson, Davin; Pulupa, Marc; Livi, Roberto; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac7aa2 Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; Plasma astrophysics; Solar Physics; 1534; 830; 1964; 1544; 1261; 1476; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Parker Solar Probe (PSP) and SolO data are utilized to investigate magnetic field intermittency in the solar wind (SW). Small-scale intermittency (20-100 d $_ i $) is observed to radially strengthen when methods relying on higher-order moments are considered (SF$_ q $; SDK), but no clear trend is observed at larger scales. However, lower-order moment-based methods (e.g., partial variance of increments; PVI) are deemed more appropriate for examining the evolution of the bulk of coherent structures (CSs), PVI \ensuremath\geq 3 ... Sioulas, Nikos; Huang, Zesen; Velli, Marco; Chhiber, Rohit; Cuesta, Manuel; Shi, Chen; Matthaeus, William; Bandyopadhyay, Riddhi; Vlahos, Loukas; Bowen, Trevor; Qudsi, Ramiz; Bale, Stuart; Owen, Christopher; Louarn, P.; Fedorov, A.; c, Milan; Stevens, Michael; Case, Anthony; Kasper, Justin; Larson, Davin; Pulupa, Marc; Livi, Roberto; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac7aa2 Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; Space plasmas; Plasma astrophysics; Solar Physics; 1534; 830; 1964; 1544; 1261; 1476; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Tracking of magnetic helicity evolution in the inner heliosphere. A radial alignment study Context. Magnetic helicity is one of the invariants in ideal magnetohydrodynamics, and its spectral evolution has a substantial amount of information to reveal the mechanism that are behind turbulence in space and astrophysical plasmas. \ Aims: The goal of our study is to observationally characterize the magnetic helicity evolution in the inner heliosphere by resolving the helicity transport in a scale-wise fashion in the spectral domain. \ Methods: The evolution of the magnetic helicity spectrum in the inner heliosphere was ... Alberti, T.; Narita, Y.; Hadid, L.~Z.; Heyner, D.; Milillo, A.; Plainaki, C.; Auster, H.; Richter, I.; Published by: \aap Published on: aug YEAR: 2022   DOI: 10.1051/0004-6361/202244314 Parker Data Used; Solar wind; Sun: fundamental parameters; Sun: heliosphere |
Small-Scale Magnetic Holes in the Solar Wind Observed by Parker Solar Probe The small-scale magnetic hole (SSMH), characterized by magnetic field depression, is a structure with the size in the order of proton gyro-radius. SSMHs near the Earth or other planets have been widely observed in recent years. However, SSMHs in the solar wind near the Sun are rarely investigated due to mission constraints. In the present study, SSMHs in the pristine solar wind within a wide heliocentric distance range are analyzed based on the Parker Solar Probe (PSP) Mission measurements. A total of 2,416 SSMHs are success ... Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Wei, Y.~Y.; Zhang, J.; Xu, S.~B.; Xiong, Q.~Y.; Wang, Z.; Lin, R.~T.; Li, Y.~J.; Wang, C.~M.; Song, G.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030505 Parker Data Used; Solar wind; small-scale magnetic hole; PSP |
Small-Scale Magnetic Holes in the Solar Wind Observed by Parker Solar Probe The small-scale magnetic hole (SSMH), characterized by magnetic field depression, is a structure with the size in the order of proton gyro-radius. SSMHs near the Earth or other planets have been widely observed in recent years. However, SSMHs in the solar wind near the Sun are rarely investigated due to mission constraints. In the present study, SSMHs in the pristine solar wind within a wide heliocentric distance range are analyzed based on the Parker Solar Probe (PSP) Mission measurements. A total of 2,416 SSMHs are success ... Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Wei, Y.~Y.; Zhang, J.; Xu, S.~B.; Xiong, Q.~Y.; Wang, Z.; Lin, R.~T.; Li, Y.~J.; Wang, C.~M.; Song, G.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030505 Parker Data Used; Solar wind; small-scale magnetic hole; PSP |
Small-Scale Magnetic Holes in the Solar Wind Observed by Parker Solar Probe The small-scale magnetic hole (SSMH), characterized by magnetic field depression, is a structure with the size in the order of proton gyro-radius. SSMHs near the Earth or other planets have been widely observed in recent years. However, SSMHs in the solar wind near the Sun are rarely investigated due to mission constraints. In the present study, SSMHs in the pristine solar wind within a wide heliocentric distance range are analyzed based on the Parker Solar Probe (PSP) Mission measurements. A total of 2,416 SSMHs are success ... Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Wei, Y.~Y.; Zhang, J.; Xu, S.~B.; Xiong, Q.~Y.; Wang, Z.; Lin, R.~T.; Li, Y.~J.; Wang, C.~M.; Song, G.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030505 Parker Data Used; Solar wind; small-scale magnetic hole; PSP |
Small-Scale Magnetic Holes in the Solar Wind Observed by Parker Solar Probe The small-scale magnetic hole (SSMH), characterized by magnetic field depression, is a structure with the size in the order of proton gyro-radius. SSMHs near the Earth or other planets have been widely observed in recent years. However, SSMHs in the solar wind near the Sun are rarely investigated due to mission constraints. In the present study, SSMHs in the pristine solar wind within a wide heliocentric distance range are analyzed based on the Parker Solar Probe (PSP) Mission measurements. A total of 2,416 SSMHs are success ... Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Wei, Y.~Y.; Zhang, J.; Xu, S.~B.; Xiong, Q.~Y.; Wang, Z.; Lin, R.~T.; Li, Y.~J.; Wang, C.~M.; Song, G.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030505 Parker Data Used; Solar wind; small-scale magnetic hole; PSP |
A magnetic flux rope configuration derived by optimization of two-spacecraft In-situ measurements Increasingly one interplanetary coronal mass ejection (ICME) structure can propagate across more than one spacecraft in the solar wind. This usually happens when two or more spacecraft are nearly radially aligned with a relatively small longitudinal separation angle from one another. This provides multi-point measurements of the same structure and enables better characterization and validation of modeling results of the structures embedded in these ICMEs. We report such an event during October 13-14, 2019 when the Solar TErr ... Published by: Frontiers in Physics Published on: aug YEAR: 2022   DOI: 10.3389/fphy.2022.960315 Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Solar Chromospheric Network as a Source for Solar Wind Switchbacks Recent studies suggest that the magnetic switchbacks (SBs) detected by the Parker Solar Probe carry information on the scales of solar supergranulation (large scale) and granulation (medium scale). We test this claim using high-resolution H\ensuremath\alpha images obtained with the visible spectropolarimeters of the Goode Solar Telescope in Big Bear Solar Observatory. As possible solar sources, we count all the spicule-like features standing along the chromospheric networks near the coronal hole boundary visible in the H\ens ... Lee, Jeongwoo; Yurchyshyn, Vasyl; Wang, Haimin; Yang, Xu; Cao, Wenda; Oliveros, Juan; Published by: \apjl Published on: aug YEAR: 2022   DOI: 10.3847/2041-8213/ac86bf Parker Data Used; Solar magnetic fields; Solar chromosphere; Solar wind; interplanetary magnetic fields; 1503; 1479; 1534; 824 |
Electron ring velocity space distributions have previously been seen in numerical simulations of magnetic reconnection exhausts and have been suggested to be caused by the magnetization of the electron outflow jet by the compressed reconnected magnetic fields Barbhuiya, Hasan; Cassak, P.~A.; Shay, M.~A.; Roytershteyn, Vadim; Swisdak, M.; Caspi, Amir; Runov, Andrei; Liang, Haoming; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030610 Parker Data Used; magnetic reconnection; magnetotail; hot solar flares; electron ring distributions; dipolarization fronts; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Electron ring velocity space distributions have previously been seen in numerical simulations of magnetic reconnection exhausts and have been suggested to be caused by the magnetization of the electron outflow jet by the compressed reconnected magnetic fields Barbhuiya, Hasan; Cassak, P.~A.; Shay, M.~A.; Roytershteyn, Vadim; Swisdak, M.; Caspi, Amir; Runov, Andrei; Liang, Haoming; Published by: Journal of Geophysical Research (Space Physics) Published on: aug YEAR: 2022   DOI: 10.1029/2022JA030610 Parker Data Used; magnetic reconnection; magnetotail; hot solar flares; electron ring distributions; dipolarization fronts; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Franci, Luca; Papini, Emanuele; Del Sarto, Daniele; Hellinger, Petr; Burgess, David; Matteini, Lorenzo; Landi, Simone; Montagud-Camps, Victor; Published by: Universe Published on: aug YEAR: 2022   DOI: 10.3390/universe8090453 |
Franci, Luca; Papini, Emanuele; Del Sarto, Daniele; Hellinger, Petr; Burgess, David; Matteini, Lorenzo; Landi, Simone; Montagud-Camps, Victor; Published by: Universe Published on: aug YEAR: 2022   DOI: 10.3390/universe8090453 |
The solar wind undergoes significant heating as it propagates away from the Sun; the exact mechanisms responsible for this heating remain unclear. Using data from the first perihelion of the Parker Solar Probe mission, we examine the properties of proton and electron heating occurring within magnetic coherent structures identified by means of the Partial Variance of Increments (PVI) method. Statistically, regions of space with strong gradients in the magnetic field, PVI \ensuremath\geq 1, are associated with strongly enhance ... Sioulas, Nikos; Shi, Chen; Huang, Zesen; Velli, Marco; Published by: \apjl Published on: aug YEAR: 2022   DOI: 10.3847/2041-8213/ac85de Parker Data Used; Solar wind; Solar coronal heating; interplanetary turbulence; Magnetohydrodynamics; 1534; 1989; 830; 1964; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
The solar wind undergoes significant heating as it propagates away from the Sun; the exact mechanisms responsible for this heating remain unclear. Using data from the first perihelion of the Parker Solar Probe mission, we examine the properties of proton and electron heating occurring within magnetic coherent structures identified by means of the Partial Variance of Increments (PVI) method. Statistically, regions of space with strong gradients in the magnetic field, PVI \ensuremath\geq 1, are associated with strongly enhance ... Sioulas, Nikos; Shi, Chen; Huang, Zesen; Velli, Marco; Published by: \apjl Published on: aug YEAR: 2022   DOI: 10.3847/2041-8213/ac85de Parker Data Used; Solar wind; Solar coronal heating; interplanetary turbulence; Magnetohydrodynamics; 1534; 1989; 830; 1964; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R $_\ensuremath\odot$ above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two pla ... Telloni, Daniele; Zank, Gary; Sorriso-Valvo, Luca; Amicis, Raffaella; Panasenco, Olga; Susino, Roberto; Bruno, Roberto; Perrone, Denise; Adhikari, Laxman; Liang, Haoming; Nakanotani, Masaru; Zhao, Lingling; Hadid, Lina; anchez-Cano, Beatriz; Verscharen, Daniel; Velli, Marco; Grimani, Catia; Marino, Raffaele; Carbone, Francesco; Mancuso, Salvatore; Biondo, Ruggero; Pagano, Paolo; Reale, Fabio; Bale, Stuart; Kasper, Justin; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis; Romoli, Marco; Andretta, Vincenzo; Da Deppo, Vania; Fineschi, Silvano; Heinzel, Petr; Moses, John; Naletto, Giampiero; Nicolini, Gianalfredo; Spadaro, Daniele; Stangalini, Marco; Teriaca, Luca; Capobianco, Gerardo; Capuano, Giuseppe; Casini, Chiara; Casti, Marta; Chioetto, Paolo; Corso, Alain; De Leo, Yara; Fabi, Michele; Frassati, Federica; Frassetto, Fabio; Giordano, Silvio; Guglielmino, Salvo; Jerse, Giovanna; Landini, Federico; Liberatore, Alessandro; Magli, Enrico; Massone, Giuseppe; Messerotti, Mauro; Pancrazzi, Maurizio; Pelizzo, Maria; Romano, Paolo; Sasso, Clementina; Schühle, Udo; Slemer, Alessandra; Straus, Thomas; Uslenghi, Michela; Volpicelli, Cosimo; Zangrilli, Luca; Zuppella, Paola; Abbo, Lucia; Auchère, Fr\; Cuadrado, Regina; Berlicki, Arkadiusz; Ciaravella, Angela; Lamy, Philippe; Lanzafame, Alessandro; Malvezzi, Marco; Nicolosi, Piergiorgio; o, Giuseppe; Peter, Hardi; Solanki, Sami; Strachan, Leonard; Tsinganos, Kanaris; Ventura, Rita; Vial, Jean-Claude; Woch, Joachim; Zimbardo, Gaetano; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac8103 Parker Data Used; H II regions; Alfven waves; Space plasmas; interplanetary turbulence; Solar corona; Heliosphere; Solar wind; 694; 23; 1544; 830; 1483; 711; 1534 |
The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R $_\ensuremath\odot$ above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two pla ... Telloni, Daniele; Zank, Gary; Sorriso-Valvo, Luca; Amicis, Raffaella; Panasenco, Olga; Susino, Roberto; Bruno, Roberto; Perrone, Denise; Adhikari, Laxman; Liang, Haoming; Nakanotani, Masaru; Zhao, Lingling; Hadid, Lina; anchez-Cano, Beatriz; Verscharen, Daniel; Velli, Marco; Grimani, Catia; Marino, Raffaele; Carbone, Francesco; Mancuso, Salvatore; Biondo, Ruggero; Pagano, Paolo; Reale, Fabio; Bale, Stuart; Kasper, Justin; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis; Romoli, Marco; Andretta, Vincenzo; Da Deppo, Vania; Fineschi, Silvano; Heinzel, Petr; Moses, John; Naletto, Giampiero; Nicolini, Gianalfredo; Spadaro, Daniele; Stangalini, Marco; Teriaca, Luca; Capobianco, Gerardo; Capuano, Giuseppe; Casini, Chiara; Casti, Marta; Chioetto, Paolo; Corso, Alain; De Leo, Yara; Fabi, Michele; Frassati, Federica; Frassetto, Fabio; Giordano, Silvio; Guglielmino, Salvo; Jerse, Giovanna; Landini, Federico; Liberatore, Alessandro; Magli, Enrico; Massone, Giuseppe; Messerotti, Mauro; Pancrazzi, Maurizio; Pelizzo, Maria; Romano, Paolo; Sasso, Clementina; Schühle, Udo; Slemer, Alessandra; Straus, Thomas; Uslenghi, Michela; Volpicelli, Cosimo; Zangrilli, Luca; Zuppella, Paola; Abbo, Lucia; Auchère, Fr\; Cuadrado, Regina; Berlicki, Arkadiusz; Ciaravella, Angela; Lamy, Philippe; Lanzafame, Alessandro; Malvezzi, Marco; Nicolosi, Piergiorgio; o, Giuseppe; Peter, Hardi; Solanki, Sami; Strachan, Leonard; Tsinganos, Kanaris; Ventura, Rita; Vial, Jean-Claude; Woch, Joachim; Zimbardo, Gaetano; Published by: \apj Published on: aug YEAR: 2022   DOI: 10.3847/1538-4357/ac8103 Parker Data Used; H II regions; Alfven waves; Space plasmas; interplanetary turbulence; Solar corona; Heliosphere; Solar wind; 694; 23; 1544; 830; 1483; 711; 1534 |