PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 445 entries in the Bibliography.


Showing entries from 201 through 250


2020

Tracking solar wind flows from rapidly varying viewpoints by the Wide-field Imager for Parker Solar Probe

\ Aims: Our goal is to develop methodologies to seamlessly track transient solar wind flows viewed by coronagraphs or heliospheric imagers from rapidly varying viewpoints. \ Methods: We constructed maps of intensity versus time and elongation (J-maps) from Parker Solar Probe (PSP) Wide- field Imager (WISPR) observations during the fourth encounter of PSP. From the J-map, we built an intensity on impact-radius-on- Thomson-surface map (R-map). Finally, we constructed a latitudinal intensity versus time map (Lat-map). Our metho ...

Nindos, A.; Patsourakos, S.; Vourlidas, A.; Liewer, P.C.; Penteado, P.; Hall, J.R.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039414"

Parker Data Used; parker solar probe; Solar Probe Plus

Tracking solar wind flows from rapidly varying viewpoints by the Wide-field Imager for Parker Solar Probe

\ Aims: Our goal is to develop methodologies to seamlessly track transient solar wind flows viewed by coronagraphs or heliospheric imagers from rapidly varying viewpoints. \ Methods: We constructed maps of intensity versus time and elongation (J-maps) from Parker Solar Probe (PSP) Wide- field Imager (WISPR) observations during the fourth encounter of PSP. From the J-map, we built an intensity on impact-radius-on- Thomson-surface map (R-map). Finally, we constructed a latitudinal intensity versus time map (Lat-map). Our metho ...

Nindos, A.; Patsourakos, S.; Vourlidas, A.; Liewer, P.C.; Penteado, P.; Hall, J.R.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039414"

Parker Data Used; parker solar probe; Solar Probe Plus

Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere

Context. Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by quieter radial fields. \ Aims: We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. \ Methods: We fitted 3D bi- ...

Woodham, L.; Horbury, T.; Matteini, L.; Woolley, T.; Laker, R.; Bale, S.; Nicolaou, G.; Stawarz, J.; Stansby, D.; Hietala, H.; Larson, D.; Livi, R.; Verniero, J.; McManus, M.; Kasper, J.; Korreck, K.; Raouafi, N.; Moncuquet, M.; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039415"

Parker Data Used; parker solar probe; Solar Probe Plus

Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona

The structure of magnetic flux ropes injected into the solar wind during reconnection in the coronal atmosphere is explored with particle-in-cell simulations and compared with in situ measurements of magnetic switchbacks from the Parker Solar Probe. We suggest that multi-x-line reconnection between open and closed flux in the corona injects flux ropes into the solar wind and that these flux ropes convect outward over long distances before eroding due to reconnection. Simulations that explore the magnetic structure of flu ...

Drake, J.; Agapitov, A.; Swisdak, M.; Badman, S.; Bale, S.; Horbury, T.; Kasper, Justin; MacDowall, R.; Mozer, F.; Phan, T.; Pulupa, M.; Szabo, A.; Velli, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039432"

Parker Data Used; parker solar probe; Solar Probe Plus

Coronal mass ejections observed by heliospheric imagers at 0.2 and 1 au. The events on April 1 and 2, 2019

Context. We study two coronal mass ejections (CMEs) observed between April 1 to 2, 2019 by both the inner Wide-Field Imager for Parker Solar Probe (WISPR-I) onboard the Parker Solar Probe (PSP) spacecraft (located between about 46 and 38 solar radii during this period) and the inner heliospheric imager (HI-1) onboard the Solar Terrestrial Relations Observatory Ahead (STEREO-A) spacecraft, orbiting the Sun at about 0.96 au. This is the first study of CME observations from two viewpoints in similar directions but at considerab ...

Braga, C.; Vourlidas, A.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039490"

Parker Data Used; parker solar probe; Solar Probe Plus

Evolution of a steamer-blowout CME as observed by imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory

Context. On 26-27 January 2020, the Wide-field Imager for Solar Probe on Parker Solar Probe (PSP) observed a coronal mass ejection (CME) from a distance of approximately 30 R$_\ensuremath\odot$ as it passed through the instrument s 95\textdegree field-of- view, providing an unprecedented view of the flux rope morphology of the CME s internal structure. The same CME was seen by Solar Terrestrial Relations Observatory-Ahead (STEREO-A), beginning on 25 January. \ Aims: Our goal is to understand the origin and determine the traj ...

Liewer, P.; Qiu, J.; Vourlidas, A.; Hall, J.; Penteado, P.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039641"

Parker Data Used; parker solar probe; Solar Probe Plus

Evolution of a steamer-blowout CME as observed by imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory

Context. On 26-27 January 2020, the Wide-field Imager for Solar Probe on Parker Solar Probe (PSP) observed a coronal mass ejection (CME) from a distance of approximately 30 R$_\ensuremath\odot$ as it passed through the instrument s 95\textdegree field-of- view, providing an unprecedented view of the flux rope morphology of the CME s internal structure. The same CME was seen by Solar Terrestrial Relations Observatory-Ahead (STEREO-A), beginning on 25 January. \ Aims: Our goal is to understand the origin and determine the traj ...

Liewer, P.; Qiu, J.; Vourlidas, A.; Hall, J.; Penteado, P.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2020     DOI: "10.1051/0004-6361/202039641"

Parker Data Used; parker solar probe; Solar Probe Plus

Magnetohydrodynamic Turbulent Evolution of a Magnetic Cloud in the Outer Heliosphere

Telloni, Daniele; Zhao, Lingling; Zank, Gary; Liang, Haoming; Nakanotani, Masaru; Adhikari, Laxman; Carbone, Francesco; Amicis, Raffaella; Perrone, Denise; Bruno, Roberto; Dasso, Sergio;

Published by: \apjl      Published on: 12/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abcb03

Parker Data Used; Magnetohydrodynamics; interplanetary turbulence; Solar coronal mass ejections; interplanetary magnetic fields; Heliosphere; Solar wind; Solar magnetic reconnection; 1964; 830; 310; 824; 711; 1534; 1504

Coherent Events at Ion Scales in the Inner Heliosphere: Parker Solar Probe Observations during the First Encounter

The Parker Solar Probe mission has shown the ubiquitous presence of strong magnetic field deflections, namely switchbacks, during its first perihelion where it was embedded in a highly Alfvenic slow stream. Here, we study the turbulent magnetic fluctuations around ion scales in three intervals characterized by a different switchback activity, identified by the behavior of the magnetic field radial component, B-r. Quiet (B-r does not show significant fluctuations), weakly disturbed (B-r has strong fluctuations but no reversal ...

Perrone, Denise; Bruno, Roberto; Amicis, Raffaella; Telloni, Daniele; De Marco, Rossana; Stangalini, Marco; Perri, Silvia; Pezzi, Oreste; Alexandrova, Olga; Bale, Stuart;

Published by: ASTROPHYSICAL JOURNAL      Published on: 12/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abc480

Parker Data Used

Tearing Modes in Partially Ionized Astrophysical Plasma

Pucci, Fulvia; Singh, Alkendra; Tenerani, Anna; Velli, Marco;

Published by: \apjl      Published on: 11/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abc0e7

Parker Data Used; Solar magnetic reconnection; Plasma astrophysics; Space plasmas; Collision processes; 1504; 1261; 1544; 2065; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Novel aspects of cosmic ray diffusion in synthetic magnetic turbulence

Dundovic, Andrej; Pezzi, Oreste; Blasi, Pasquale; Evoli, Carmelo; Matthaeus, William;

Published by: \prd      Published on: 11/2020

YEAR: 2020     DOI: 10.1103/PhysRevD.102.103016

Parker Data Used; Astrophysics - High Energy Astrophysical Phenomena; Physics - Plasma Physics; Physics - Space Physics

The interpretation of data from the Parker Solar Probe mission: shear-driven transition to an isotropically turbulent solar wind

The Parker Solar Probe (PSP) mission has been studied since 1958. After many iterations and changes in design, the mission was launched on August 12, 2018 (see, https://www.nasa.gov/content/goddard/parker-solar-probe). PSP has completed its 3rd rendezvous with Venus and 6th perihelion passage. Each flyby brings PSP closer to the Sun (eventually to 9.7 solar radii). In October 2020 it flew within 20 solar radii of the solar surface. A goal of the mission is to determine how the solar corona is heated to ∼ a million degrees. ...

Goldstein, Melvyn; Ruffolo, D.; Matthaeus, W.~H.; Chhiber, R.; Usmanov, A.~V.; Yang, Y.; Bandyopadhyay, R.; Parashar, T.~N.; DeForest, E.; Wan, M.; Chasapis, A.; Maruca, B.~A.; Velli, M.; Kasper, J.~C.;

Published by: Radiation Effects and Defects in Solids      Published on: 11/2020

YEAR: 2020     DOI: 10.1080/10420150.2020.1845690

Parker Data Used

Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe

TheWide-field Imager for Solar Probe(WISPR) onboard theParker Solar Probe(PSP), observing in white light, has a fixed angular field of view, extending from 13.5(circle)to 108(circle)from the Sun and approximately 50(circle)in the transverse direction. Because of the highly elliptical orbit of PSP, the physical extent of the imaged coronal region varies directly as the distance from the Sun, requiring new techniques for analysis of the motions of observed density features. Here, we present a technique for determining the 3D t ...

Liewer, P.; Qiu, J.; Penteado, P.; Hall, J.; Vourlidas, A.; Howard, R.;

Published by: SOLAR PHYSICS      Published on: 10/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01715-y

Parker Data Used

Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe

TheWide-field Imager for Solar Probe(WISPR) onboard theParker Solar Probe(PSP), observing in white light, has a fixed angular field of view, extending from 13.5(circle)to 108(circle)from the Sun and approximately 50(circle)in the transverse direction. Because of the highly elliptical orbit of PSP, the physical extent of the imaged coronal region varies directly as the distance from the Sun, requiring new techniques for analysis of the motions of observed density features. Here, we present a technique for determining the 3D t ...

Liewer, P.; Qiu, J.; Penteado, P.; Hall, J.; Vourlidas, A.; Howard, R.;

Published by: SOLAR PHYSICS      Published on: 10/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01715-y

Parker Data Used

Plasma Double Layers at the Boundary Between Venus and the Solar Wind

Malaspina, D.~M.; Goodrich, K.; Livi, R.; Halekas, J.; McManus, M.; Curry, S.; Bale, S.~D.; Bonnell, J.~W.; de Wit, Dudok; Goetz, K.; Harvey, P.~R.; MacDowall, R.~J.; Pulupa, M.; Case, A.~W.; Kasper, J.~C.; Korreck, K.~E.; Larson, D.; Stevens, M.~L.; Whittlesey, P.;

Published by: \grl      Published on: 10/2020

YEAR: 2020     DOI: 10.1029/2020GL090115

Parker Data Used; kinetic physics; Venus; bow shock; magnetosheath; double layer; solar wind interaction

Oblique Tearing Mode Instability: Guide Field and Hall Effect

Shi, Chen; Velli, Marco; Pucci, Fulvia; Tenerani, Anna; Innocenti, Maria;

Published by: \apj      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb6fa

Parker Data Used; Solar magnetic reconnection; Plasma physics; Magnetohydrodynamics; 1504; 2089; 1964; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

On the Scaling Properties of Magnetic-field Fluctuations through the Inner Heliosphere

Although the interplanetary magnetic-field variability has been extensively investigated in situ using data from several space missions, newly launched missions providing high-resolution measures and approaching the Sun offer the possibility to study the multiscale variability in the innermost\ solar\ system. Here, using\ Parker\ Solar\ Probe\ measurements, we investigate the scaling properties of\ solar\ wind magnetic-field fluctuations at different heliocentric distances. The resu ...

Alberti, Tommaso; Laurenza, Monica; Consolini, Giuseppe; Milillo, Anna; Marcucci, Maria; Carbone, Vincenzo; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb3d2

Chaos; interplanetary magnetic fields; interplanetary turbulence; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Time series analysis

On the Scaling Properties of Magnetic-field Fluctuations through the Inner Heliosphere

Although the interplanetary magnetic-field variability has been extensively investigated in situ using data from several space missions, newly launched missions providing high-resolution measures and approaching the Sun offer the possibility to study the multiscale variability in the innermost\ solar\ system. Here, using\ Parker\ Solar\ Probe\ measurements, we investigate the scaling properties of\ solar\ wind magnetic-field fluctuations at different heliocentric distances. The resu ...

Alberti, Tommaso; Laurenza, Monica; Consolini, Giuseppe; Milillo, Anna; Marcucci, Maria; Carbone, Vincenzo; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb3d2

Chaos; interplanetary magnetic fields; interplanetary turbulence; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Time series analysis

Shear-driven Transition to Isotropically Turbulent Solar Wind Outside the Alfv\ en Critical Zone

Motivated by prior remote observations of a transition from striated\ solar\ coronal structures to more isotropic "flocculated" fluctuations, we propose that the dynamics of the inner\ solar\ wind just outside the Alfven critical zone, and in the vicinity of the first beta = 1 surface, is powered by the relative velocities of adjacent coronal magnetic flux tubes. We suggest that large-amplitude flow contrasts are magnetically constrained at lower altitude but shear-driven dynamics are triggered as such ...

Ruffolo, D.; Matthaeus, W.; Chhiber, R.; Usmanov, A.; Yang, Y.; Bandyopadhyay, R.; Parashar, T.; Goldstein, M.; Deforest, C.; Wan, M.; Chasapis, A.; Maruca, B.; Velli, M.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb594

Parker Data Used; parker solar probe; Solar Probe Plus

The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe

he long-term evolution of the Sun\textquoterights rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate proportional to age(-1/2), requires the current\ solar\ angular momentum (AM) loss rate to be around 6 x 10(30)erg. Magnetohydrodynamic models, and previous observations of the\ solar\ wind (from the Helios and Wind spacecraft), generally predict a value ...

Finley, Adam; Matt, Sean; eville, Victor; Pinto, Rui; Owens, Mathew; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; Livi, Roberto;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abb9a5

Parker Data Used; parker solar probe; Solar evolution; Solar Physics; Solar Probe Plus; Solar rotation; Solar wind; Stellar evolution; Stellar physics; Stellar rotation

Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretic ...

Florido-Llinas, M.; Nieves-Chinchilla, T.; Linton, M.;

Published by: Solar Physics      Published on: 09/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01687-z

coronal mass ejections; Flux ropes; Kink instability; magnetic fields; parker solar probe; Solar Probe Plus; Twist distribution

Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretic ...

Florido-Llinas, M.; Nieves-Chinchilla, T.; Linton, M.;

Published by: Solar Physics      Published on: 09/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01687-z

coronal mass ejections; Flux ropes; Kink instability; magnetic fields; parker solar probe; Solar Probe Plus; Twist distribution

PIC Simulations of Microinstabilities and Waves at Near-Sun Solar Wind Perpendicular Shocks: Predictions for Parker Solar Probe and Solar Orbiter

Microinstabilities and waves excited at moderate-Mach-number perpendicular shocks in the near-Sun solar wind are investigated by full particle-in-cell simulations. By analyzing the dispersion relation of fluctuating field components directly issued from the shock simulation, we obtain key findings concerning wave excitations at the shock front: (1) at the leading edge of the foot, two types of electrostatic (ES) waves are observed. The relative drift of the reflected ions versus the electrons triggers an electron cyclotro ...

Yang, Zhongwei; Liu, Ying; Matsukiyo, Shuichi; Lu, Quanming; Guo, Fan; Liu, Mingzhe; Xie, Huasheng; Gao, Xinliang; Guo, Jun;

Published by: The Astrophysical Journal      Published on: 09/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abaf59

Interplanetary shocks; parker solar probe; Plasma astrophysics; Plasma physics; Solar Probe Plus; Space plasmas

PIC Simulations of Microinstabilities and Waves at Near-Sun Solar Wind Perpendicular Shocks: Predictions for Parker Solar Probe and Solar Orbiter

Microinstabilities and waves excited at moderate-Mach-number perpendicular shocks in the near-Sun solar wind are investigated by full particle-in-cell simulations. By analyzing the dispersion relation of fluctuating field components directly issued from the shock simulation, we obtain key findings concerning wave excitations at the shock front: (1) at the leading edge of the foot, two types of electrostatic (ES) waves are observed. The relative drift of the reflected ions versus the electrons triggers an electron cyclotro ...

Yang, Zhongwei; Liu, Ying; Matsukiyo, Shuichi; Lu, Quanming; Guo, Fan; Liu, Mingzhe; Xie, Huasheng; Gao, Xinliang; Guo, Jun;

Published by: The Astrophysical Journal      Published on: 09/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abaf59

Interplanetary shocks; parker solar probe; Plasma astrophysics; Plasma physics; Solar Probe Plus; Space plasmas

Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe

A polytropic process describes the transition of a fluid from one state to another through a specific relationship between the fluid density and temperature. The value of the polytropic index that governs this relationship determines the heat transfer and the effective degrees of freedom during a specific process. In this study, we analyze\ solar\ wind proton plasma measurements, obtained by the Faraday cup instrument on board the\ Parker\ Solar\ Probe. We examine the large-scale variations of the ...

Nicolaou, Georgios; Livadiotis, George; Wicks, Robert; Verscharen, Daniel; Maruca, Bennett;

Published by: The Astrophysical Journal      Published on: 09/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abaaae

Parker Data Used; parker solar probe; Solar Physics; Solar Probe Plus; Solar wind; Space plasmas

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

The Solar Origin of Particle Events Measured by Parker Solar Probe

During the second solar encounter phase of Parker Solar Probe (PSP), two small solar energetic particle (SEP) events were observed by the Integrated Science Investigation of the Sun, on 2019 April 2 and 4. At the time, PSP was approaching its second perihelion at a distance of \~24.8 million kilometers from the solar center, it was in near-radial alignment with STEREO-A and in quadrature with Earth. During the two SEP events multiple narrow ejections and a streamer-blowout coronal mass ejection (SBO-CME) originated from a ...

Kouloumvakos, Athanasios; Vourlidas, Angelos; Rouillard, Alexis; Roelof, Edmond; Leske, Rick; Pinto, Rui; Poirier, Nicolas;

Published by: The Astrophysical Journal      Published on: 08/2020

YEAR: 2020     DOI: 10.3847/1538-4357/aba5a1

Parker Data Used; parker solar probe; Solar coronal mass ejection shocks; Solar coronal mass ejections; Solar energetic particles; Solar particle emission; Solar Probe Plus

Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4 . Based on our measurements, we demonstrate that either a significant (\>50 \%) fraction of the total turbulent energy flux is dissipated in this range of scales ...

Bowen, Trevor; Mallet, Alfred; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chasapis, Alexandros; Chen, Christopher; Duan, Die; de Wit, Thierry; Goetz, Keith; Halekas, Jasper; Harvey, Peter; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; McManus, Michael; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

Published by: Physical Review Letters      Published on: 07/2020

YEAR: 2020     DOI: 10.1103/PhysRevLett.125.025102

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

Parker Data Used; parker solar probe; Solar Probe Plus

Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed

Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ...

Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab93b6

1534; parker solar probe; Solar Probe Plus

Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed

Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ...

Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab93b6

1534; parker solar probe; Solar Probe Plus

Coronal-jet-producing Minifilament Eruptions as a Possible Source of Parker Solar Probe Switchbacks

The Parker Solar Probe (PSP) has observed copious rapid magnetic field direction changes in the near-Sun solar wind. These features have been called "switchbacks," and their origin is a mystery. But their widespread nature suggests that they may be generated by a frequently occurring process in the Sun\textquoterights atmosphere. We examine the possibility that the switchbacks originate from coronal jets. Recent work suggests that many coronal jets result when photospheric magnetic flux cancels, and forms a small-scale "m ...

Sterling, Alphonse; Moore, Ronald;

Published by: The Astrophysical Journal      Published on: 06/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab96be

1503; 1504; 1534; 1981; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Two-time energy spectrum of weak magnetohydrodynamic turbulence

In this work a weak-turbulence closure is used to determine the structure of the two-time power spectrum of weak magnetohydrodynamic (MHD) turbulence from the nonlinear equations describing the dynamics. The two-time energy spectrum is a fundamental quantity in turbulence theory from which most statistical properties of a homogeneous turbulent system can be derived. A closely related quantity, obtained via a spatial Fourier transform, is the two-point two-time correlation function describing the space-time correlations arisi ...

Perez, Jean; Azelis, Augustus; Bourouaine, Sofiane;

Published by: PHYSICAL REVIEW RESEARCH      Published on: 05/2020

YEAR: 2020     DOI: 10.1103/PhysRevResearch.2.023189

Parker Data Used

The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe\textquoterights First Orbit

We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe\textquoterights (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Su ...

Lavraud, B.; Fargette, N.; Réville, V.; Szabo, A.; Huang, J.; Rouillard, A.; Viall, N.; Phan, T.; Kasper, J.; Bale, S.; Berthomier, M.; Bonnell, J.; Case, A.; de Wit, Dudok; Eastwood, J.; enot, V.; Goetz, K.; Griton, L.; Halekas, J.; Harvey, P.; Kieokaew, R.; Klein, K.; Korreck, K.; Kouloumvakos, A.; Larson, D.; Lavarra, M.; Livi, R.; Louarn, P.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Nieves-Chinchilla, T.; Pinto, R.; Poirier, N.; Pulupa, M.; Raouafi, N.; Stevens, M.; Toledo-Redondo, S.; Whittlesey, P.;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab8d2d

Parker Data Used; parker solar probe; Solar Probe Plus

Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves

Parker Solar Probe (PSP), NASA\textquoterights latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSP\textquote ...

Verniero, J.; Larson, D.; Livi, R.; Rahmati, A.; McManus, M.; Pyakurel, Sharma; Klein, K.; Bowen, T.; Bonnell, J.; Alterman, B.; Whittlesey, P.; Malaspina, David; Bale, S.; Kasper, J.; Case, A.; Goetz, K.; Harvey, P.; Korreck, K.; MacDowall, R.; Pulupa, M.; Stevens, M.; de Wit, Dudok;

Published by: The Astrophysical Journal Supplement Series      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab86af

Alfv\ en waves; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Plasma physics; Solar Probe Plus; Solar wind; Space plasmas

Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind

In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements\textemdashakin to what is observed in closed coronal loops\textemdashthe slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the ...

Réville, Victor; Velli, Marco; Rouillard, Alexis; Lavraud, Benoit; Tenerani, Anna; Shi, Chen; Strugarek, Antoine;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab911d

Astrophysics - Solar and Stellar Astrophysics; Magnetohydrodynamics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Slow solar wind; Solar magnetic reconnection; Solar Probe Plus; Solar wind

Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations

The shape of the electron velocity distribution function plays an important role in the dynamics of the solar wind acceleration. Electrons are normally modeled with three components, the core, the halo, and the strahl. We investigate how well the fast strahl electrons in the inner heliosphere preserve the information about the coronal electron temperature at their origin. We analyzed the data obtained by two missions, Helios, spanning the distances between 65 and 215 RS, and Parker Solar Probe (PSP), reaching d ...

Bercic, Laura; Larson, Davin; Whittlesey, Phyllis; Maksimovic, Milan; Badman, Samuel; Landi, Simone; Matteini, Lorenzo; Bale, Stuart.; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael;

Published by: The Astrophysical Journal      Published on: 04/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab7b7a

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Electron Energy Partition across Interplanetary Shocks. III. Analysis

Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine;

Published by: \apj      Published on: 04/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab7d39

Parker Data Used; 1534; 829; 310; 1997; 1544; 1261; 2089; 826; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements

One of the discoveries of the Parker Solar Probe during its first encounters with the Sun is ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were named "switchbacks" since some of them show a full reversal of the radial component of the magnetic field and then return to "regular" conditions. We carried out an analysis of three typical switchback structures having different characteristics: I. Alfv\ enic structure, where the variations of the magnetic ...

Krasnoselskikh, V.; Larosa, A.; Agapitov, O.; de Wit, Dudok; Moncuquet, M.; Mozer, F.; Stevens, M.; Bale, S.; Bonnell, J.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Raouafi, N.; Revillet, C.; Velli, M.; Wygant, J.;

Published by: The Astrophysical Journal      Published on: 04/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab7f2d

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles

The Wide-field Imager for Parker Solar Probe (WISPR) captures unprecedented white-light images of the solar corona and inner heliosphere. Thanks to the uniqueness of the Parker Solar Probe\textquoterights (PSP) orbit, WISPR is able to image "locally" coronal structures at high spatial and time resolutions. The observed plane of sky, however, rapidly changes because of the PSP\textquoterights high orbital speed. Therefore, the interpretation of the dynamics of the coronal structures recorded by WISPR is not straightforward ...

Nisticò, Giuseppe; Bothmer, Volker; Vourlidas, Angelos; Liewer, Paulett; Thernisien, Arnaud; Stenborg, Guillermo; Howard, Russell;

Published by: Solar Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01626-y

Astrophysics - Solar and Stellar Astrophysics; Corona; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles

The Wide-field Imager for Parker Solar Probe (WISPR) captures unprecedented white-light images of the solar corona and inner heliosphere. Thanks to the uniqueness of the Parker Solar Probe\textquoterights (PSP) orbit, WISPR is able to image "locally" coronal structures at high spatial and time resolutions. The observed plane of sky, however, rapidly changes because of the PSP\textquoterights high orbital speed. Therefore, the interpretation of the dynamics of the coronal structures recorded by WISPR is not straightforward ...

Nisticò, Giuseppe; Bothmer, Volker; Vourlidas, Angelos; Liewer, Paulett; Thernisien, Arnaud; Stenborg, Guillermo; Howard, Russell;

Published by: Solar Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01626-y

Astrophysics - Solar and Stellar Astrophysics; Corona; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Improving Predictions of High-Latitude Coronal Mass Ejections Throughout the Heliosphere

Predictions of the impact of coronal mass ejections (CMEs) in the heliosphere mostly rely on cone CME models, whose performances are optimized for locations in the ecliptic plane and at 1 AU (e.g., at Earth). Progresses in the exploration of the inner heliosphere, however, advocate the need to assess their performances at both higher latitudes and smaller heliocentric distances. In this work, we perform 3-D magnetohydrodynamics simulations of artificial cone CMEs using the EUropean Heliospheric FORecasting Information Ass ...

Scolini, C.; e, Chan\; Pomoell, J.; Rodriguez, L.; Poedts, S.;

Published by: Space Weather      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019SW002246

coronal mass ejections; forecasting; Heliosphere; modeling; parker solar probe; Solar Probe Plus

Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R Radii

Observations by the Parker Solar Probe mission of the solar wind at \~35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 to 20-80 Hz (from 0.2 to 0.5 fce). The polarization of these ...

Agapitov, O.; de Wit, Dudok; Mozer, F.; Bonnell, J.; Drake, J.; Malaspina, D.; Krasnoselskikh, V.; Bale, S.; Whittlesey, P.; Case, A.; Chaston, C.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Pulupa, M.; Revillet, C.; Stevens, M.; Wygant, J.;

Published by: The Astrophysical Journal      Published on: 03/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab799c

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD ...

Nieves-Chinchilla, Teresa; Szabo, Adam; Korreck, Kelly; Alzate, Nathalia; Balmaceda, Laura; Lavraud, Benoit; Paulson, Kristoff; Narock, Ayris; Wallace, Samantha; Jian, Lan; Luhmann, Janet; Morgan, Huw; Higginson, Aleida; Arge, Charles; Bale, Stuart; Case, Anthony; de Wit, Thierry; Giacalone, Joe; Goetz, Keith; Harvey, Peter; Jones-Melosky, Shaela; Kasper, J.; Larson, Davin; Livi, Roberto; McComas, David; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Raouafi, Nour; Schwadron, Nathan; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab61f5

Parker Data Used; parker solar probe; Solar Probe Plus

Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the Parker Solar Probe and Comparison with Helios

We discuss the solar wind electron temperatures Te as measured in the nascent solar wind by Parker Solar Probe during its first perihelion pass. The measurements have been obtained by fitting the high-frequency part of quasi-thermal noise spectra recorded by the Radio Frequency Spectrometer. In addition we compare these measurements with those obtained by the electrostatic analyzer discussed in Halekas et al. These first electron observations show an anticorrelation between Te and the wind bulk speed ...

Maksimovic, M.; Bale, S.; c, Ber\v; Bonnell, J.; Case, A.; de Wit, Dudok; Goetz, K.; Halekas, J.; Harvey, P.; Issautier, K.; Kasper, J.; Korreck, K.; Jagarlamudi, Krishna; Lahmiti, N.; Larson, D.; Lecacheux, A.; Livi, R.; MacDowall, R.; Malaspina, D.; c, M.; Meyer-Vernet, N.; Moncuquet, M.; Pulupa, M.; Salem, C.; Stevens, M.; ak, \v; Velli, M.; Whittlesey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab61fc

Parker Data Used; parker solar probe; Solar Probe Plus



  3      4      5      6      7      8