PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 214 entries in the Bibliography.


Showing entries from 201 through 214


2013

The design, development, and implementation of a solar environmental simulator (SES) for the SAO Faraday Cup on Solar Probe Plus

This paper describes the implementation of a solar simulator, know as the Solar Environment Simulator (SES), that can simulate solar flux levels up to those encountered at 9.8 solar radii. The paper outlines the design, and the challenges of realizing the SES. It also describes its initial uses for proving out the design of the Solar Winds Electrons, Alphas, and Protons (SWEAP) Faraday cup. The upcoming Solar Probe Plus (SPP) mission requires that its in-situ plasma instrument (the Faraday Cup) survive and operate over an un ...

Cheimets, Peter; Bookbinder, Jay; Freeman, Mark; Gates, Richard; Gauron, Thomas; Guth, Giora; Kasper, Justin; McCracken, Kenneth; Podgorski, William;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2013     DOI:

Arc lamps; Power control; Probes; Test facilities; Parker Engineering

Technology development for the solar probe plus faraday cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2013     DOI:

plasmas; Solar wind; Parker Engineering

The design, development, and implementation of a solar environmental simulator (SES) for the SAO Faraday Cup on Solar Probe Plus

This paper describes the implementation of a solar simulator, know as the Solar Environment Simulator (SES), that can simulate solar flux levels up to those encountered at 9.8 solar radii. The paper outlines the design, and the challenges of realizing the SES. It also describes its initial uses for proving out the design of the Solar Winds Electrons, Alphas, and Protons (SWEAP) Faraday cup. The upcoming Solar Probe Plus (SPP) mission requires that its in-situ plasma instrument (the Faraday Cup) survive and operate over an un ...

Cheimets, Peter; Bookbinder, Jay; Freeman, Mark; Gates, Richard; Gauron, Thomas; Guth, Giora; Kasper, Justin; McCracken, Kenneth; Podgorski, William;

Published by:       Published on:

YEAR: 2013     DOI: 10.1117/12.2024051

Parker Data Used

Technology development for the Solar Probe Plus Faraday Cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by:       Published on:

YEAR: 2013     DOI: 10.1117/12.2024983

Parker Data Used

2012

A simple 3D plasma instrument with an electrically adjustable geometric factor for space research

We report on the design and experimental verification of a novel charged particle detector and an energy spectrometer with variable geometric factor functionality. Charged particle populations in the inner heliosphere create fluxes that can vary over many orders of magnitude in flux intensity. Space missions that plan to observe plasma fluxes, for example when travelling close to the Sun or to a planetary magnetosphere, require rapid particle measurements over the full three-dimensional velocity distribution. Traditionall ...

Rohner, U; Saul, L; Wurz, P; Allegrini, F; Scheer, J; McComas, D;

Published by: Measurement Science and Technology      Published on: 02/2012

YEAR: 2012     DOI: 10.1088/0957-0233/23/2/025901

parker solar probe; Solar Probe Plus

Thermal radiative properties of carbon materials under high temperature and vacuum ultra-violet (VUV) radiation for the heat shield of the Solar Probe Plus mission

The Solar Probe Plus (SP+) mission will approach the Sun as close as 9.5 solar radii in order to understand the origin of the solar corona heating and the acceleration of the solar wind. Submitted to such extreme environmental conditions, a thermal protection system is considered to protect the payload of the SP+ spacecraft. Carbon-based materials are good candidate to fulfill this role and critical point remains the equilibrium temperature reached at perihelion by the heat shield. In this paper, experimental results obta ...

Balat-Pichelin, M.; Eck, J.; Sans, J.L.;

Published by: Applied Surface Science      Published on: 01/2012

YEAR: 2012     DOI: 10.1016/j.apsusc.2011.10.142

Carbon material; High temperature; Ion etching; Parker Data Used; Solar Probe Plus; Thermal radiative properties; VUV radiation

High-irradiance high-temperature vacuum testing of the Solar Probe Plus array design

The Solar Probe Plus (SPP) spacecraft will fly further into the Sun s corona than any previous mission, reaching a minimum perihelion at 9.5 solar radii from the center of the Sun. The solar arrays powering the spacecraft will operate under unusually high irradiances and temperatures. The array design, material choices, and necessary test facilities for SPP are therefore quite different from those used on traditional space panels. This paper gives an overview of the high-irradiance high-temperature vacuum (HIHT-Vac) reliabil ...

Boca, Andreea; Blumenfeld, Philip; Crist, Kevin; De Zetter, Karen; Mitchell, Richard; Richards, Benjamin; Sarver, Charles; Sharps, Paul; Stan, Mark; Tourino, Cory;

Published by: Conference Record of the IEEE Photovoltaic Specialists Conference      Published on:

YEAR: 2012     DOI:

Photovoltaic cells; Probes; Solar cell arrays; Sun; Parker Engineering

2011

Concentrated Solar Energy to Study High Temperature Materials for Space and Energy

In this paper, the concentrated solar energy is used as a source of high temperatures to study the physical and chemical behaviors and intrinsic properties of refractory materials. The atmospheres surrounding the materials have to be simulated in experimental reactors to characterize the materials in real environments. Several application fields are concerned such as the aerospace and the energy fields: examples of results will be given for the heat shield of the Solar Probe Plus mission (NASA) for the SiC/SiC material that ...

Charpentier, Ludovic; Dawi, Kamel; Eck, Julien; Pierrat, Baptiste; Sans, Jean-Louis; Balat-Pichelin, Marianne;

Published by: JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME      Published on: 08/2011

YEAR: 2011     DOI: 10.1115/1.4004241

Parker Data Used

Experimental study of carbon materials behavior under high temperature and VUV radiation: Application to Solar Probe+ heat shield

The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the ...

Eck, J.; Sans, J.-L.; Balat-Pichelin, M.;

Published by: Applied Surface Science      Published on: 02/2011

YEAR: 2011     DOI: 10.1016/j.apsusc.2010.10.139

Parker Data Used; parker solar probe; Solar Probe Plus

Testing of solar cells for the solar probe plus mission

The Solar Probe Plus (SPP) is an upcoming mission in NASA s "Living with a Star Program" to be built by the Johns Hopkins University Applied Physics Laboratory. The spacecraft will orbit the sun for a primary mission duration of seven years, making a closest approach to the sun at a distance of 0.0442 AU. Instrumentation on SPP will focus on two primary science investigations: the sun s coronal heating and solar wind acceleration, and the production, evolution, and transport of solar energetic particles. The mission is sched ...

Scheiman, David; Piszczor, Michael; Snyder, David; McNatt, Jeremiah; Landis, Geoffrey; Isabella, Louis; Putt, Nicolas;

Published by: Conference Record of the IEEE Photovoltaic Specialists Conference      Published on:

YEAR: 2011     DOI:

Gallium compounds; Heat shielding; NASA; Orbits; Probes; Solar cell arrays; Space flight; Parker Engineering

2010

Ceramic coatings for the solar probe plus mission

A study was conducted to develop the coatings needed to protect the Solar Probe Plus Thermal Protection System (TPS) from the harsh environment. The TPS encountered harsh environment during its mission close to the sun, facing significant solar fluxes. The first part of the study addressed the way a coating s microstructure affected its optical properties and the way coatings were designed to maintain the right microstructure over temperature. The study was led by a researcher from the Advanced Technology Laboratory of the W ...

Mehoke, D.; Congdon, E.; , Drewry; Eddins, C.; Deacon, R.; Wolf, T.; Hahn, D.; King, D.; Nagle, D.; Buchta, M.; Zhang, D.; Hemker, K.; Spicer, J.; Jones, J.; Ryan, S.; Schlichter, G.;

Published by: Johns Hopkins APL Technical Digest (Applied Physics Laboratory)      Published on:

YEAR: 2010     DOI:

Grain growth; Microstructure; Optical properties; Probes; Parker Engineering

Combined effect of high temperature and VUV radiation on carbon-based materials

For the next exploration of the sun, missions like Solar Probe+ (NASA) or Phoibos (ESA) will be launched to answer to fundamental questions on the solar corona heating and solar winds origin. Such solar probes missions that will pass very close to the sun, respectively at 9.5 and 4 solar radii (Rs), need thermal shield to protect the payload and the instrumentation. Carbon/carbon composites can withstand the severe environment encountered during the pass of the sun and have to be studied to understand their physico-chemical ...

Eck, J.; Sans, J.L.; Balat-Pichelin, M.;

Published by: ECS Transactions      Published on:

YEAR: 2010     DOI:

Carbon; Carbon carbon composites; Heat shielding; NASA; Probes; Space flight; Parker Engineering

2008

Modeling and technology development for sensitive near-solar particle measurements

Mukherjee, Pran;

Published by:       Published on: 01/2008

YEAR: 2008     DOI:

MEMS; Nanoimprint lithography; DRIE; Pick-up ions; Transmission grating; Micromachining; Particle measurements

1986

Sapphire Photocurrent Sources and Their Impact on RAM Upset

This paper reports on the transient photocurrent measurements made with test structures fabricated on sapphire substrates, and the computer simulation model which was developed to use the test results. Predictions of logic upset for a 4 K RAM CMOS/SOS compared with measured upset rates showed agreement within a factor of 2. The test structure results indicate that the sapphire photoconductance is 6.3 x 10 to the -19th mhos/(rads/s)-micron. The use of this value in the present simulation model will increase the predicted u ...

Brucker, G.; Herbert, J.; Stewart, R.; Plus, D.;

Published by: IEEE Transactions on Nuclear Science      Published on: 12/1986

YEAR: 1986     DOI: 10.1109/TNS.1986.4334608

CMOS; Electric Current; Electronics and Electrical Engineering; Logic Circuits; parker solar probe; Photoconductivity; Radiation Damage; Random Access Memory; Sapphire; Solar Probe Plus; Sos (Semiconductors)



  1      2      3      4      5