PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 473 entries in the Bibliography.


Showing entries from 201 through 250


2019

Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter

The electric and magnetic field instrument suite FIELDS on board the NASA Parker Solar Probe and the radio and plasma waves instrument RPW on the ESA Solar Orbiter mission that explore the inner heliosphere are sensitive to signals generated by dust impacts. Dust impacts have been observed using electric field antennas on spacecraft since the 1980s and the method was recently used with a number of space missions to derive dust fluxes. Here, we consider the details of dust impacts, subsequent development of the impact gene ...

Mann, Ingrid; ak, Libor; Vaverka, Jakub; Antonsen, Tarjei; Fredriksen, \r; Issautier, Karine; Malaspina, David; Meyer-Vernet, Nicole; u, Ji\v; Sternovsky, Zoltan; Stude, Joan; Ye, Shengyi; Zaslavsky, Arnaud;

Published by: Annales Geophysicae      Published on: 12/2019

YEAR: 2019     DOI: 10.5194/angeo-37-1121-2019

Parker Data Used; parker solar probe; Solar Probe Plus

Electron Energy Partition across Interplanetary Shocks. II. Statistics

A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within \textpm2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low-energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future w ...

Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine;

Published by: The Astrophysical Journal Supplement Series      Published on: 12/2019

YEAR: 2019     DOI: 10.3847/1538-4365/ab5445

Astrophysics - Solar and Stellar Astrophysics; Interplanetary particle acceleration; Interplanetary shocks; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Plasma physics; Solar coronal mass ejection shocks; Solar coronal mass ejections; Solar Probe Plus; Solar wind; Space plasmas

Highly structured slow solar wind emerging from an equatorial coronal hole

During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfv\ enic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of ...

Bale, S.; Badman, S.; Bonnell, J.; Bowen, T.; Burgess, D.; Case, A.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Drake, J.; de Wit, Dudok; Eastwood, J.; Ergun, R.; Farrell, W.; Fong, C.; Goetz, K.; Goldstein, M.; Goodrich, K.; Harvey, P.; Horbury, T.; Howes, G.; Kasper, J.; Kellogg, P.; Klimchuk, J.; Korreck, K.; Krasnoselskikh, V.; Krucker, S.; Laker, R.; Larson, D.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Martinez-Oliveros, J.; McComas, D.; Meyer-Vernet, N.; Moncuquet, M.; Mozer, F.; Phan, T.; Pulupa, M.; Raouafi, N.; Salem, C.; Stansby, D.; Stevens, M.; Szabo, A.; Velli, M.; Woolley, T.; Wygant, J.;

Published by: Nature      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/s41586-019-1818-7

Parker Data Used; parker solar probe; Solar Probe Plus

Near-Sun observations of an F-corona decrease and K-corona fine structure

Remote observations of the solar photospheric light scattered by electrons (the K-corona) and dust (the F-corona or zodiacal light) have been made from the ground during eclipses and from space at distances as small as 0.3 astronomical units to the Sun. Previous observations of dust scattering have not confirmed the existence of the theoretically predicted dust-free zone near the Sun. The transient nature of the corona has been well characterized for large events, but questions still remain (for example, about the initiat ...

Howard, R.; Vourlidas, A.; Bothmer, V.; Colaninno, R.; Deforest, C.; Gallagher, B.; Hall, J.; Hess, P.; Higginson, A.; Korendyke, C.; Kouloumvakos, A.; Lamy, P.; Liewer, P.; Linker, J.; Linton, M.; Penteado, P.; Plunkett, S.; Poirier, N.; Raouafi, N.; Rich, N.; Rochus, P.; Rouillard, A.; Socker, D.; Stenborg, G.; Thernisien, A.; Viall, N.;

Published by: Nature      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/s41586-019-1807-x

Parker Data Used; parker solar probe; Solar Probe Plus

Probing the energetic particle environment near the Sun

NASA\textquoterights Parker Solar Probe mission recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: "impulsive" events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in ...

McComas, D.; Christian, E.; Cohen, C.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Krimigis, S.; Labrador, A.; Leske, R.; Malandraki, O.; Matthaeus, W.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Posner, A.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Bale, S.; Kasper, J.; Case, A.; Korreck, K.; MacDowall, R.; Pulupa, M.; Stevens, M.; Rouillard, A.;

Published by: Nature      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/s41586-019-1811-1

Parker Data Used; parker solar probe; Solar Probe Plus

Self-induced Scattering of Strahl Electrons in the Solar Wind

We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability thresho ...

Verscharen, Daniel; Chandran, Benjamin; Jeong, Seong-Yeop; Salem, Chadi; Pulupa, Marc; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 12/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab4c30

Astrophysics - Solar and Stellar Astrophysics; instabilities; parker solar probe; Physics - Geophysics; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence; waves

A step closer to the Sun\textquoterights secrets

NASA\textquoterights Parker Solar Probe is currently making a series of close encounters with the Sun. Initial observations from the spacecraft have improved our understanding of both the Sun and its environment.

Verscharen, Daniel;

Published by: Nature      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/d41586-019-03665-3

Parker Data Used; parker solar probe; Solar Probe Plus

Sun-bombing spacecraft uncovers secrets of the solar wind

Surprise magnetic reversals and an unexpectedly fast rotating wind mark the first findings from NASA\textquoterights Parker Solar Probe.

Witze, Alexandra;

Published by: Nature      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/d41586-019-03684-0

Parker Data Used; parker solar probe; Solar Probe Plus

Ion Cyclotron Waves in Field-aligned Solar Wind Turbulence

Telloni, Daniele; Carbone, Francesco; Bruno, Roberto; Zank, Gary; Sorriso-Valvo, Luca; Mancuso, Salvatore;

Published by: \apjl      Published on: 11/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab4c44

Parker Data Used; Magnetohydrodynamics; Space plasmas; Solar wind; interplanetary turbulence; Alfven waves; 1964; 1544; 1534; 830; 23

The Long-standing Closure Crisis in Coronal Plasmas

Coronal and solar wind physics have long used plasma fluid models to motivate physical explanations of observations; the hypothesized model is introduced into a fluid simulation to see if observations are reproduced. This procedure is called Verification of Mechanism (VoM) modeling; it is contingent on the self consistency of the closure that made the simulation possible. Inner corona VoMs typically assume weak gradient Spitzer-Braginskii closures. Four prominent coronal VoMs in place for decades are shown to contradict t ...

Scudder, J.;

Published by: The Astrophysical Journal      Published on: 11/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab48e0

Astrophysical fluid dynamics; parker solar probe; Solar corona; Solar coronal heating; Solar Probe Plus; Solar wind

Validation of MHD Model Predictions of the Corona with LASCO-C2 Polarized Brightness Images

Progress in our understanding of the solar corona requires that the results of advanced magnetohydrodynamic models driven by measured magnetic fields, and particularly the underlying heating models, be thoroughly compared with coronal observations. The comparison has so far mainly concerned the global morphology of the corona, synthetic images calculated from the models being compared with observed images. We go one step further by performing detailed quantitative comparisons between the calculated polarized radiance p B ...

Lamy, Philippe; Floyd, Olivier; Mikic, Zoran; Riley, Pete;

Published by: Solar Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1007/s11207-019-1549-9

Corona; Eclipses; LASCO; Magnetohydrodynamics; Observations; Parker Data Used; parker solar probe; quiet; Solar Probe Plus

Magnetic Field Line Twisting by Photospheric Vortices: Energy Storage and Release

Rappazzo, A.~F.; Velli, M.; Dahlburg, R.~B.; Einaudi, G.;

Published by: \apj      Published on: 10/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab3c69

Parker Data Used; magnetohydrodynamics: MHD; Sun: corona; Sun: coronal mass ejections: CMEs; Astrophysics - Solar and Stellar Astrophysics

Large-scale parallel electric fields and return currents in a global simulation model

Arnold, H.; Drake, J.~F.; Swisdak, M.; Dahlin, J.;

Published by: Physics of Plasmas      Published on: 10/2019

YEAR: 2019     DOI: 10.1063/1.5120373

Parker Data Used; Physics - Plasma Physics; Physics - Space Physics

Instabilities and turbulence in low-\ensuremath\beta guide field reconnection exhausts with kinetic Riemann simulations

Zhang, Qile; Drake, J.~F.; Swisdak, M.;

Published by: Physics of Plasmas      Published on: 10/2019

YEAR: 2019     DOI: 10.1063/1.5121782

Parker Data Used; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Evolution of Coronal Mass Ejection Properties in the Inner Heliosphere: Prediction for the Solar Orbiter and Parker Solar Probe

The evolution of the magnetic field and plasma quantities inside a coronal mass ejection (CME) with distance are known from statistical studies using data from 1 au monitors, planetary missions, Helios, and Ulysses. This does not cover the innermost heliosphere, below 0.29 au, where no data are yet publicly available. Here, we describe the evolution of the properties of simulated CMEs in the inner heliosphere using two different initiation mechanisms. We compare the radial evolution of these properties with that found fro ...

Al-Haddad, Nada; Lugaz, No\; Poedts, Stefaan; Farrugia, Charles; Nieves-Chinchilla, Teresa; Roussev, Ilia;

Published by: The Astrophysical Journal      Published on: 10/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab4126

Astrophysics - Solar and Stellar Astrophysics; Ejecta; interplanetary magnetic fields; Interplanetary physics; parker solar probe; Solar coronal mass ejections; Solar Probe Plus

Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24

By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spira ...

Chang, Qing; Xu, Xiaojun; Xu, Qi; Zhong, Jun; Xu, Jiaying; Wang, Jing; Zhang, Tielong;

Published by: The Astrophysical Journal      Published on: 10/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab412a

parker solar probe; planets and satellites: magnetic fields; Solar Probe Plus; Solar wind; Sun: activity; Sun: magnetic fields

Reynolds Number and Intermittency in the Expanding Solar Wind: Predictions Based on Voyager Observations

The large-scale features of the solar wind are examined in order to predict small-scale features of turbulence in unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number Re, varies, and then how this quantity influences observable statistical properties, including intermittency properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings is that the kurtosis, of the small-scale magnetic field increments, will increase with increasing R ...

Parashar, T.; Cuesta, M.; Matthaeus, W.;

Published by: The Astrophysical Journal      Published on: 10/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab4a82

Heliosphere; interplanetary turbulence; parker solar probe; Physics - Space Physics; Plasma astrophysics; Solar Probe Plus; Solar wind; Space plasmas

Solar Wind Temperature Isotropy

Reliable models of the solar wind in the near-Earth space environment may constrain conditions close to the Sun. This is relevant to NASA\textquoterights contemporary innerheliospheric mission Parker Solar Probe. Among the outstanding issues is how to explain the solar wind temperature isotropy. Perpendicular and parallel proton and electron temperatures near 1 AU are theoretically predicted to be unequal, but in situ observations show quasi-isotropy sufficiently below the instability threshold condition. This has not bee ...

Yoon, P.; Seough, J.; Salem, C.; Klein, K.;

Published by: Physical Review Letters      Published on: 10/2019

YEAR: 2019     DOI: 10.1103/PhysRevLett.123.145101

parker solar probe; Solar Probe Plus

Temperature Fluctuation at the Sun and Large-scale Electric Field in Solar Wind: A Challenge for the Parker Solar Probe Mission

Velocity distributions of particles are key elements in the study of solar wind. The physical mechanisms that regulate their many features are a matter of debate. The present work addresses the subject with a fully analytical method in order to establish the shape of particle velocity distributions in solar wind. The method consists of solving the steady-state kinetic equation for particles and the related fluid equations, with spatial profiles for density and temperature that match general observational data. The model i ...

Pavan, J.; Vi\~nas, A.;

Published by: The Astrophysical Journal      Published on: 09/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab2fcd

Interplanetary particle acceleration; Kappa mechanism; Parallel field; parker solar probe; Solar coronal transients; Solar Probe Plus; Solar wind

Thermodynamics of pure fast solar wind: radial evolution of the temperature\textendashspeed relationship in the inner heliosphereABSTRACT

A strong correlation between speed and proton temperature has been observed, across many years, on hourly averaged measurements in the solar wind. Here, we show that this relationship is also observed at a smaller scale on intervals of a few days, within a single stream. Following the radial evolution of a well-defined stream of coronal-hole plasma, we show that the temperature-speed (T-V) relationship evolves with distance, implying that the T-V relationship at 1 au cannot be used as a proxy for that near the Sun. We sug ...

Perrone, Denise; Stansby, D; Horbury, T; Matteini, L;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 09/2019

YEAR: 2019     DOI: 10.1093/mnras/stz1877

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Correcting Parker Solar Probe Electron Measurements for Spacecraft Magnetic and Electric Fields

The spacecraft body of the Parker Solar Probe may interfere with electron measurements in two ways. The first is the presence of several permanent magnets near the Solar Probe Analyzers (SPAN) instruments. The second is the widely varying spacecraft potential. We estimate the effect of these interferences by performing particle tracing simulations on electrons of various energies using a simplified model of the spacecraft potential and measurements of the magnetic fields. From this we can (1) estimate the individual and comb ...

McGinnis, Daniel; Halekas, Jasper; Whittlesey, Phyllis; Larson, Davin; Kasper, Justin;

Published by: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026823

Parker Data Used

Reflection-driven magnetohydrodynamic turbulence in the solar atmosphere and solar wind

Chandran, Benjamin; Perez, Jean;

Published by: Journal of Plasma Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1017/S0022377819000540

Parker Data Used; astrophysical plasmas; plasma nonlinear phenomena; space plasma physics; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Dynamic Evolution of Current Sheets, Ideal Tearing, Plasmoid Formation and Generalized Fractal Reconnection Scaling Relations

Singh, K.~A.~P.; Pucci, Fulvia; Tenerani, Anna; Shibata, Kazunari; Hillier, Andrew; Velli, Marco;

Published by: \apj      Published on: 08/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab2b99

Parker Data Used; magnetic reconnection; magnetohydrodynamics: MHD; plasmas; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Role of magnetic field curvature in magnetohydrodynamic turbulence

Yang, Yan; Wan, Minping; Matthaeus, William; Shi, Yipeng; Parashar, Tulasi; Lu, Quanming; Chen, Shiyi;

Published by: Physics of Plasmas      Published on: 08/2019

YEAR: 2019     DOI: 10.1063/1.5099360

Parker Data Used; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

On the Fast Solar Wind Heating and Acceleration Processes: A Statistical Study Based on the UVCS Survey Data

The UltraViolet Coronagraph Spectrometer (UVCS) on board the SOlar and Heliospheric Observatory has almost continuously observed, throughout the whole solar cycle 23, the UV solar corona. This work addresses the first-ever statistical analysis of the daily UVCS observations, performed in the O VI channel, of the northern polar coronal hole, between 1.5 and 3 R , during the period of low solar activity from 1996 April to 1997 December. The study is based on the investigation, at different heights, of the corr ...

Telloni, Daniele; Giordano, Silvio; Antonucci, Ester;

Published by: The Astrophysical Journal      Published on: 08/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab3731

parker solar probe; Solar corona; Solar coronal heating; Solar Probe Plus; Solar wind; The Sun

Project Lyra: Sending a spacecraft to 1I/\textquoterightOumuamua (former A/2017 U1), the interstellar asteroid

The first definitely interstellar object 1I/\textquoterightOumuamua (previously A/2017 U1) observed in our solar system provides the opportunity to directly study material from an other star system. Can such objects be intercepted? The challenge of reaching the object within a reasonable timeframe is formidable due to its high heliocentric hyperbolic excess velocity of about 26 km/s; much faster than any vehicle yet launched. This paper presents a high-level analysis of potential near-term options for a mission to 1I/\tex ...

Hein, Andreas; Perakis, Nikolaos; Eubanks, Marshall; Hibberd, Adam; Crowl, Adam; Hayward, Kieran; Kennedy, Robert; Osborne, Richard;

Published by: Acta Astronautica      Published on: 08/2019

YEAR: 2019     DOI: 10.1016/j.actaastro.2018.12.042

parker solar probe; Solar Probe Plus

Single-spacecraft Identification of Flux Tubes and Current Sheets in the Solar Wind

A novel technique is presented for describing and visualizing the local topology of the magnetic field using single-spacecraft data in the solar wind. The approach merges two established techniques: the Grad-Shafranov (GS) reconstruction method, which provides a plausible regional two-dimensional magnetic field surrounding the spacecraft trajectory, and the Partial Variance of Increments (PVI) technique that identifies coherent magnetic structures, such as current sheets. When applied to one month of Wind magnetic field d ...

Pecora, Francesco; Greco, Antonella; Hu, Qiang; Servidio, Sergio; Chasapis, Alexandros; Matthaeus, William;

Published by: The Astrophysical Journal      Published on: 08/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab32d9

interplanetary turbulence; magnetic fields; parker solar probe; Solar Probe Plus; Solar wind

Frontiers to be explored by the Parker Solar Probe mission

JianSen, He; Hui, Tian;

Published by: SCIENCE CHINA-TECHNOLOGICAL SCIENCES      Published on: 08/2019

YEAR: 2019     DOI: 10.1007/s11431-018-9399-9

Parker Data Used

Energy conversion in turbulent weakly collisional plasmas: Eulerian hybrid Vlasov-Maxwell simulations

Pezzi, O.; Yang, Y.; Valentini, F.; Servidio, S.; Chasapis, A.; Matthaeus, W.~H.; Veltri, P.;

Published by: Physics of Plasmas      Published on: 07/2019

YEAR: 2019     DOI: 10.1063/1.5100125

Parker Data Used; Physics - Plasma Physics; Physics - Space Physics

Particle heating and energy partition in low-\ensuremath\beta guide field reconnection with kinetic Riemann simulations

Zhang, Qile; Drake, J.~F.; Swisdak, M.;

Published by: Physics of Plasmas      Published on: 07/2019

YEAR: 2019     DOI: 10.1063/1.5104352

Parker Data Used; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Electron Energy Partition across Interplanetary Shocks. I. Methodology and Data Product

Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine;

Published by: \apjs      Published on: 07/2019

YEAR: 2019     DOI: 10.3847/1538-4365/ab22bd

Parker Data Used; methods: numerical; methods: statistical; plasmas; shock waves; Solar wind; Sun: coronal mass ejections: CMEs; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

A laboratory model for the Parker spiral and magnetized stellar winds

Peterson, Ethan; Endrizzi, Douglass; Beidler, Matthew; Bunkers, Kyle; Clark, Michael; Egedal, Jan; Flanagan, Ken; McCollam, Karsten; Milhone, Jason; Olson, Joseph; Sovinec, Carl; Waleffe, Roger; Wallace, John; Forest, Cary;

Published by: Nature Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1038/s41567-019-0592-7

Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind

Ofman, Leon;

Published by: \solphys      Published on: 07/2019

YEAR: 2019     DOI: 10.1007/s11207-019-1440-8

Solar wind; theory: numerical modeling; instabilities; waves; plasma; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Simulating White Light Images of Coronal Structures for WISPR/Parker Solar Probe: Effects of the Near-Sun Elliptical Orbit

The three-to-five-month elliptical orbit of Parker Solar Probe (PSP), approaching within 10 solar radii of the Sun, will allow the Wide-field Imager for Solar Probe (WISPR) to view the corona with unprecedented spatial resolution from multiple viewpoints. WISPR has a wide fixed angular field of view, extending from 13.5 degrees to 108 degrees from the Sun and approximately 50 degrees in the transverse direction, but the physical extent of the imaged coronal region varies directly with the distance of the spacecraft from the ...

Liewer, P.; Vourlidas, A.; Thernisien, A.; Qiu, J.; Penteado, P.; Nistico, G.; Howard, R.; Bothmer, V.;

Published by: SOLAR PHYSICS      Published on: 07/2019

YEAR: 2019     DOI: 10.1007/s11207-019-1489-4

Parker Data Used

On the Interpretation of Parker Solar Probe Turbulent Signals

In this Letter we propose a practical methodology to interpret future Parker Solar Probe (PSP) turbulent time signals even when Taylor s hypothesis is not valid. By extending Kraichnan s sweeping model used in hydrodynamics we derive the Eulerian spacetime correlation function in magnetohydrodynamic (MHD) turbulence. It is shown that in MHD, the temporal decorrelation of small-scale fluctuations arises from a combination of hydrodynamic sweeping induced by large-scale fluid velocity delta u(0) and by the Alfvenic propagation ...

Bourouaine, Sofiane; Perez, Jean;

Published by: ASTROPHYSICAL JOURNAL LETTERS      Published on: 07/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab288a

Parker Data Used

Towards Construction of a Solar Wind Reanalysis Dataset: Application to the First Perihelion Pass of Parker Solar Probe

Accurate reconstruction of global solar-wind structure is essential for connecting remote and in situ observations of solar plasma, and hence understanding formation and release of solar wind. Information can routinely be obtained from photospheric magnetograms, via coronal and solar-wind modelling, and directly from in situ observations, typically at large heliocentric distances (most commonly near 1 AU). Magnetogram-constrained modelling has the benefit of reconstructing global solar-wind structure, but with relatively lar ...

Owens, Mathew; Lang, Matthew; Riley, Pete; Stansby, David;

Published by: SOLAR PHYSICS      Published on: 06/2019

YEAR: 2019     DOI: 10.1007/s11207-019-1479-6

Parker Data Used

Strong Preferential Ion Heating is Limited to within the Solar Alfven Surface

The decay of the solar wind helium-to-hydrogen temperature ratio due to Coulomb thermalization can be used to measure how far from the Sun strong preferential ion heating occurs. Previous work has shown that a zone of preferential ion heating, resulting in mass-proportional temperatures, extends about 20-40 R-circle dot from the Sun on average. Here we look at the motion of the outer boundary of this zone with time and compare it to other physically meaningful distances. We report that the boundary moves in lockstep with the ...

Kasper, Justin; Klein, Kristopher;

Published by: ASTROPHYSICAL JOURNAL LETTERS      Published on: 06/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab1de5

Parker Data Used

Tomography of the Solar Corona with the Wide-Field Imager for the Parker Solar Probe

The Wide-field Imager for the Parker Solar Probe (PSP/WISPR) comprises two telescopes that record white-light total brightness [B] images of the solar corona. Their fields of view cover a widely changing range of heliocentric heights over the 24 highly eccentric orbits planned for the mission. In this work, the capability of PSP/WISPR data to carry out tomographic reconstructions of the three-dimensional (3D) distribution of the coronal electron density is investigated. Based on the precise orbital information of the mission ...

Vasquez, Alberto; Frazin, Richard; Vourlidas, Angelos; Manchester, Ward; van der Holst, Bart; Howard, Russell; Lamy, Philippe;

Published by: SOLAR PHYSICS      Published on: 06/2019

YEAR: 2019     DOI: 10.1007/s11207-019-1471-1

Parker Data Used

On the Origin of Ortho-Gardenhose Heliospheric Flux

Parker-spiral theory predicts that the heliospheric magnetic field (HMF) will have components of opposite polarity radially toward the Sun and tangentially antiparallel to the solar rotation direction (i.e., in Geocentric Solar Ecliptic (GSE) coordinates, with BX/BY<0). This theory explains the average orientation of the HMF very well indeed but does not predict the so-called ortho-gardenhose (hereafter OGH) flux with which is frequently observed. We here study the occurrence and structure of OGH flux, as seen in near-Earth ...

Lockwood, Mike; Owens, Mathew; Macneil, Allan;

Published by: SOLAR PHYSICS      Published on: 06/2019

YEAR: 2019     DOI: 10.1007/s11207-019-1478-7

Parker Data Used

Contextual Predictions for Parker Solar Probe. II. Turbulence Properties and Taylor Hypothesis

The Parker Solar Probe (PSP) primary mission extends seven years and consists of 24 orbits of the Sun with descending perihelia culminating in a closest approach of similar to 9.8 R-circle dot. In the course of these orbits PSP will pass through widely varying conditions, including anticipated large variations of turbulence properties, such as energy density, correlation scales, and cross helicities. Here we employ global magnetohydrodynamic simulations with self-consistent turbulence transport and heating to preview conditi ...

Chhiber, Rohit; , Usmanov; Matthaeus, William; Parashar, Tulasi; Goldstein, Melvyn;

Published by: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES      Published on: 05/2019

YEAR: 2019     DOI: 10.3847/1538-4365/ab16d7

Parker Data Used

Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe \textquoterights First Perihelion Pass

NASA\textquoterights Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun\textquoterights photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. He ...

Riley, Pete; Downs, Cooper; Linker, Jon; Mikic, Zoran; Lionello, Roberto; Caplan, Ronald;

Published by: The Astrophysical Journal      Published on: 04/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab0ec3

Astrophysics - Solar and Stellar Astrophysics; magnetohydrodynamics: MHD; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; Sun: magnetic fields; waves

Quasi Thermal Noise Spectroscopy for Van Allen Probes

Quasi thermal fluctuations in the Langmuir/upper-hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation ...

Yoon, Peter; Hwang, Junga; Kim, Hyangpyo; Seough, Jungjoon;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019JA026460

(n + 1/2)fce; antenna geometry; parker solar probe; quasi-thermal; radiation belt; Solar Probe Plus; upper hybrid; Van Allen Probes

Combined geometrical modelling and white-light mass determination of coronal mass ejections

Pluta, Adam; Mrotzek, Niclas; Vourlidas, Angelos; Bothmer, Volker; Savani, Neel;

Published by: \aap      Published on: 03/2019

YEAR: 2019     DOI: 10.1051/0004-6361/201833829

Parker Data Used; Sun: coronal mass ejections (CMEs); solar-terrestrial relations; Sun: heliosphere; Sun: corona

Large-scale Magnetic Funnels in the Solar Corona

Panasenco, Olga; Velli, Marco; Panasenco, Aram;

Published by: \apj      Published on: 03/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab017c

Parker Data Used; Solar wind; Sun: activity; Sun: corona; Sun: coronal mass ejections: CMEs; Sun: filaments; prominences; Sun: magnetic fields

Contextual Predictions for the Parker Solar Probe . I. Critical Surfaces and Regions

The solar corona and young solar wind may be characterized by critical surfaces\textemdashthe sonic, Alfv\ en, and first plasma-β unity surfaces\textemdashthat demarcate regions where the solar wind flow undergoes certain crucial transformations. Global numerical simulations and remote sensing observations offer a natural mode for the study of these surfaces at large scales, thus providing valuable context for the high-resolution in situ measurements expected from the recently launched Parker Solar Probe (PSP). The prese ...

Chhiber, Rohit; Usmanov, Arcadi; Matthaeus, William; Goldstein, Melvyn;

Published by: The Astrophysical Journal Supplement Series      Published on: 03/2019

YEAR: 2019     DOI: 10.3847/1538-4365/ab0652

Astrophysics - Solar and Stellar Astrophysics; magnetohydrodynamics: MHD; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; turbulence

Dynamics of the solar wind: Eugene Parker s treatment and the laws of thermodynamics

In 1958, Eugene Parker advanced that the solar wind must be produced through the thermal expansion of coronal gas. At the time, he introduced

Robitaille, Pierre-Marie; Crothers, Stephen;

Published by: PHYSICS ESSAYS      Published on: 03/2019

YEAR: 2019     DOI: 10.4006/0836-1398-32.1.1

Parker Data Used

Whistler Fan Instability Driven by Strahl Electrons in the Solar Wind

Vasko, I.~Y.; Krasnoselskikh, V.; Tong, Y.; Bale, S.~D.; Bonnell, J.~W.; Mozer, F.~S.;

Published by: \apjl      Published on: 02/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab01bd

Parker Data Used; conduction; instabilities; plasmas; scattering; Solar wind; waves

Helios Observations of Quasiperiodic Density Structures in the Slow Solar Wind at 0.3, 0.4, and 0.6 AU

Di Matteo, S.; Viall, N.~M.; Kepko, L.; Wallace, S.; Arge, C.~N.; Macneice, P.;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026182

periodic density structures; slow solar wind formation

Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses

Janvier, Miho; Winslow, Reka; Good, Simon; Bonhomme, Elise; emoulin, Pascal; Dasso, Sergio; Möstl, Christian; Lugaz, No\; Amerstorfer, Tanja; e, Elie; Boakes, Peter;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA025949

coronal mass ejections; heliospheric physics; data analysis; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Dissipation Scale Lengths of Solar Wind Turbulence

Raja, Sasikumar; Subramanian, Prasad; Ingale, Madhusudan; Ramesh, R.;

Published by: \apj      Published on: 02/2019

YEAR: 2019     DOI: 10.3847/1538-4357/aafd33

occultations; scattering; Solar wind; Sun: corona; turbulence; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics



  3      4      5      6      7      8