PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 838 entries in the Bibliography.


Showing entries from 201 through 250


2021

Magnetic and Velocity Fluctuations in the Near-Sun Region from 0.1-0.3 au Observed by Parker Solar Probe

The fluctuations observed in the slow solar wind at 1 au by the WIND spacecraft are shown by recent studies to consist of mainly magnetic-field directional turning and magnetic-velocity alignment structure (MVAS). How these structures are created has been a question because the nature of the fluctuations in the near-Sun region remains unknown. Here, we present an analysis of the measurements in the slow solar wind from 0.1-0.3 au by Parker Solar Probe during its first six orbits. We present the distributions in the $C_\mathr ...

Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping;

Published by: \apj      Published on: dec

YEAR: 2021     DOI: 10.3847/1538-4357/ac3331

Parker Data Used; 1873; 830

Solar energetic particle heavy ion properties in the widespread event of 2020 November 29

Context. Following a multi-year minimum of solar activity, a solar energetic particle event on 2020 Nov. 29 was observed by multiple spacecraft covering a wide range of solar longitudes including ACE, the Solar Terrestrial Relations Observatory-A, and the recently launched Parker Solar Probe and Solar Orbiter. \ Aims: Multi-point observations of a solar particle event, combined with remote-sensing imaging of flaring, shocks, and coronal mass ejections allows for a global picture of the event to be synthesized, and made avail ...

Mason, G.~M.; Cohen, C.~M.~S.; Ho, G.~C.; Mitchell, D.~G.; Allen, R.~C.; Hill, M.~E.; Andrews, G.~B.; Berger, L.; Boden, S.; Böttcher, S.; Cernuda, I.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Eldrum, S.; Elftmann, R.; Kollhoff, A.; Giacalone, J.; omez-Herrero, R.; Hayes, J.; Janitzek, N.~P.; Joyce, C.~J.; Korth, A.; Kühl, P.; Kulkarni, S.~R.; Labrador, A.~W.; Lara, Espinosa; Lees, W.~J.; Leske, R.~A.; Mall, U.; Martin, C.; in, Mart\; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, J.~G.; Pacheco, D.; Espada, Parra; Prieto, M.; Rankin, J.~S.; Ravanbakhsh, A.; iguez-Pacheco, Rodr\; Polo, Rodr\; Roelof, E.~C.; anchez-Prieto, S.; Schlemm, C.~E.; Schwadron, N.~A.; Seifert, H.; Stone, E.~C.; Szalay, J.~R.; Terasa, J.~C.; Tyagi, K.; von Forstner, J.~L.; Wiedenbeck, M.~E.; Wimmer-Schweingruber, R.~F.; Xu, Z.~G.; Yedla, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202141310

Parker Data Used; acceleration of particles; Sun: abundances; Sun: flares; Sun: particle emission

Simulations of radio-wave anisotropic scattering to interpret type III radio burst data from Solar Orbiter, Parker Solar Probe, STEREO, and Wind

\ Aims: We use multi-spacecraft observations of individual type III radio bursts to calculate the directivity of the radio emission. We compare these data to the results of ray-tracing simulations of the radio-wave propagation and probe the plasma properties of the inner heliosphere. \ Methods: We used ray-tracing simulations of radio-wave propagation with anisotropic scattering on density inhomogeneities to study the directivity of radio emissions. Simultaneous observations of type III radio bursts by four widely separated ...

Musset, S.; Maksimovic, M.; Kontar, E.; Krupar, V.; Chrysaphi, N.; Bonnin, X.; Vecchio, A.; Cecconi, B.; Zaslavsky, A.; Issautier, K.; Bale, S.~D.; Pulupa, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140998

Parker Data Used; Sun: radio radiation; scattering; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

PSP/IS\ensuremath\odotIS observations of the 29 November 2020 solar energetic particle event

\ Aims: On 29 November 2020, at 12:34 UT, active region 12790 erupted with an M4.4 class flare and a 1700 km s$^\ensuremath-1$ coronal mass ejection. Parker Solar Probe (PSP) was completing its seventh orbit around the Sun and was located at 0.8 au when the Integrated Science Investigation of the Sun (IS\ensuremath\odotIS) measured the ensuing mid- sized solar energetic particle (SEP) event. Not only was this the first SEP event with heavy ions above 10 MeV nuc$^\ensuremath-1$ to be measured by IS\ensuremath\odotIS, it was a ...

Cohen, C.~M.~S.; Christian, E.~R.; Cummings, A.~C.; Davis, A.~J.; Desai, M.~I.; De Nolfo, G.~A.; Giacalone, J.; Hill, M.~E.; Joyce, C.~J.; Labrador, A.~W.; Leske, R.~A.; Matthaeus, W.~H.; McComas, D.~J.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, D.~G.; Mitchell, J.~G.; Rankin, J.~S.; Roelof, E.~C.; Schwadron, N.~A.; Stone, E.~C.; Szalay, J.~R.; Wiedenbeck, M.~E.; Vourlidas, A.; Bale, S.~D.; Pulupa, M.; MacDowall, R.~J.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140967

Parker Data Used; Sun: particle emission; Sun: activity; solar-terrestrial relations

First Solar Orbiter observation of the Alfv\ enic slow wind and identification of its solar source

Context. Turbulence dominated by large-amplitude, nonlinear Alfv\ en-like fluctuations mainly propagating away from the Sun is ubiquitous in high-speed solar wind streams. Recent studies have demontrated that slow wind streams may also show strong Alfv\ enic signatures, especially in the inner heliosphere. \ Aims: The present study focuses on the characterisation of an Alfv\ enic slow solar wind interval observed by Solar Orbiter between 14 and 18 July 2020 at a heliocentric distance of 0.64 AU. \ Methods: Our analysis is ba ...

Amicis, R.; Bruno, R.; Panasenco, O.; Telloni, D.; Perrone, D.; Marcucci, M.~F.; Woodham, L.; Velli, M.; De Marco, R.; Jagarlamudi, V.; Coco, I.; Owen, C.; Louarn, P.; Livi, S.; Horbury, T.; e, Andr\; Angelini, V.; Evans, V.; Fedorov, A.; Genot, V.; Lavraud, B.; Matteini, L.; Müller, D.; Brien, H.; Pezzi, O.; Rouillard, A.~P.; Sorriso-Valvo, L.; Tenerani, A.; Verscharen, D.; Zouganelis, I.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140938

Parker Data Used; Interplanetary medium; Solar wind; methods: data analysis; magnetohydrodynamics (MHD); turbulence; Sun: general

Evolution of anisotropic turbulence in the fast and slow solar wind: Theory and Solar Orbiter measurements

\ Aims: Solar Orbiter (SolO) was launched on February 9, 2020, allowing us to study the nature of turbulence in the inner heliopshere. We investigate the evolution of anisotropic turbulence in the fast and slow solar wind in the inner heliosphere using the nearly incompressible magnetohydrodynamic (NI MHD) turbulence model and SolO measurements. \ Methods: We calculated the two dimensional (2D) and the slab variances of the energy in forward and backward propagating modes, the fluctuating magnetic energy, the fluctuating kin ...

Adhikari, L.; Zank, G.~P.; Zhao, L.; Telloni, D.; Horbury, T.~S.; Brien, H.; Evans, V.; Angelini, V.; Owen, C.~J.; Louarn, P.; Fedorov, A.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140672

Parker Data Used; Solar wind; turbulence

Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage. Observations and modeling

Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ...

Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140648

Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations

Probing Upflowing Regions in the Quiet Sun and Coronal Holes

Recent observations from Parker Solar Probe have revealed that the solar wind has a highly variable structure. How this complex behaviour is formed in the solar corona is not yet known, since it requires omnipresent fluctuations, which constantly emit material to feed the wind. In this article we analyse 14 upflow regions in the solar corona to find potential sources for plasma flow. The upflow regions are derived from spectroscopic data from the EUV Imaging Spectrometer (EIS) on board Hinode determining their Doppler veloci ...

Schwanitz, Conrad; Harra, Louise; Raouafi, Nour; Sterling, Alphonse; Vacas, Alejandro; Iniesta, Jose; arez, David; Hara, Hirohisa;

Published by: \solphys      Published on: dec

YEAR: 2021     DOI: 10.1007/s11207-021-01915-0

Parker Data Used; Corona; structures; Coronal holes; Jets; Astrophysics - Solar and Stellar Astrophysics

Momentous Crossing of a Solar Boundary

The Parker Solar Probe has entered, for the first time, the Sun s magnetic atmosphere, where it started to gather data that could help researchers solve some of the greatest mysteries of solar physics.

Cohen, Christina;

Published by: Physics Online Journal      Published on: dec

YEAR: 2021     DOI: 10.1103/Physics.14.177

Parker Data Used

How to Survive Flying Too Close to the Sun

The Parker Solar Probe has flown through the Sun s atmosphere\textemdashan unforgiving environment that poses a number of engineering challenges.

Schirber, Michael;

Published by: Physics Online Journal      Published on: dec

YEAR: 2021     DOI: 10.1103/Physics.14.176

Parker Data Used

Space weather: the solar perspective

The Sun, as an active star, is the driver of energetic phenomena that structure interplanetary space and affect planetary atmospheres. The effects of Space Weather on Earth and the solar system is of increasing importance as human spaceflight is preparing for lunar and Mars missions. This review is focusing on the solar perspective of the Space Weather relevant phenomena, coronal mass ejections (CMEs), flares, solar energetic particles (SEPs), and solar wind stream interaction regions (SIR). With the advent of the STEREO mis ...

Temmer, Manuela;

Published by: Living Reviews in Solar Physics      Published on: dec

YEAR: 2021     DOI: 10.1007/s41116-021-00030-3

Parker Data Used; space weather; Solar Physics; CMEs; flares; SEPs; Dynamic corona; magnetic field; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

An application of symplectic integration for general relativistic planetary orbitography subject to non-gravitational forces

Spacecraft propagation tools describe the motion of near-Earth objects and interplanetary probes using Newton s theory of gravity supplemented with the approximate general relativistic n-body Einstein-Infeld-Hoffmann equations of motion. With respect to the general theory of relativity and the long-standing recommendations of the International Astronomical Union for astrometry, celestial mechanics and metrology, we believe modern orbitography software is now reaching its limits in terms of complexity. In this paper, we prese ...

Leary, Joseph; Barriot, Jean-Pierre;

Published by: Celestial Mechanics and Dynamical Astronomy      Published on: dec

YEAR: 2021     DOI: 10.1007/s10569-021-10051-7

Parker Data Used; General relativity; Non-gravitational forces; Symplectic integration

A Provably Positive, Divergence-free Constrained Transport Scheme for the Simulation of Solar Wind

In this paper, we present a provably positive, divergence-free constrained transport (CT) scheme to simulate the steady-state solar wind ambient with the three-dimensional magnetohydrodynamics numerical model. The positivity can be lost in two ways: one way is in the reconstruction process, and the other is in the updating process when the variables are advanced to the next time step. We adopt a self-adjusting strategy to bring the density and pressure into the permitted range in the reconstruction process, and use modified ...

Zhang, Man; Feng, Xueshang; Liu, Xiaojing; Yang, Liping;

Published by: \apjs      Published on: dec

YEAR: 2021     DOI: 10.3847/1538-4365/ac1e29

Parker Data Used; Solar wind; Magnetohydrodynamical simulations; 1534; 1966

Geometry of Magnetic Fluctuations near the Sun from the Parker Solar Probe

Solar wind magnetic fluctuations exhibit anisotropy due to the presence of a mean magnetic field in the form of the Parker spiral. Close to the Sun, direct measurements were not available until the recently launched Parker Solar Probe (PSP) mission. The nature of the anisotropy and geometry of the magnetic fluctuations play a fundamental role in dissipation processes and in the transport of energetic particles in space. Using PSP data, we present measurements of the geometry and anisotropy of the inner heliosphere magnetic f ...

Bandyopadhyay, R.; McComas, D.~J.;

Published by: \apj      Published on: dec

YEAR: 2021     DOI: 10.3847/1538-4357/ac3486

Parker Data Used; 1534; 830; 994; 1483; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Switchback-like structures observed by Solar Orbiter

Context. Rapid polarity reversals of the radial heliospheric magnetic field were discovered by Ulysses and they are now frequently observed as a common near-Sun phenomenon by NASA s Parker Solar Probe (PSP). Other solar wind missions, including ESA-NASA Solar Orbiter (SolO), also observe similar phenomena. The nature of these fluctuations is unclear, and the relation between the switchbacks observed near the Sun and similar events observed at 1 AU is unknown. \ Aims: We make a detailed case study of the SolO plasma and m ...

Fedorov, A.; Louarn, P.; Owen, C.~J.; Horbury, T.~S.; Prech, L.; Durovcova, T.; Barthe, A.; Rouillard, A.~P.; Kasper, J.~C.; Bale, S.~D.; Bruno, R.; Brien, H.; Evans, V.; Angelini, V.; Larson, D.; Livi, R.; Lavraud, B.; Andre, N.; Genot, V.; Penou, E.; Mele, G.; Fortunato, V.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202141246

Parker Data Used; magnetic reconnection; Sun: heliosphere

The angular-momentum flux in the solar wind observed during Solar Orbiter s first orbit

\ Aims: We present the first measurements of the angular- momentum flux in the solar wind recorded by the Solar Orbiter spacecraft. Our aim is to validate these measurements to support future studies of the Sun s angular-momentum loss. \ Methods: We combined 60-min averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser and the magnetometer onboard Solar Orbiter. We calculated the angular-momentum flux per solid-angle element using data from the first orbit of the mission s cruise phase ...

Verscharen, Daniel; Stansby, David; Finley, Adam; Owen, Christopher; Horbury, Timothy; Maksimovic, Milan; Velli, Marco; Bale, Stuart; Louarn, Philippe; Fedorov, Andrei; Bruno, Roberto; Livi, Stefano; Khotyaintsev, Yuri; Vecchio, Antonio; Lewis, Gethyn; Anekallu, Chandrasekhar; Kelly, Christopher; Watson, Gillian; Kataria, Dhiren; Brien, Helen; Evans, Vincent; Angelini, Virginia; SWA, MAG; Teams, RPW;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140956

magnetohydrodynamics (MHD); plasmas; Sun: magnetic fields; Solar wind; stars: rotation; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29

Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (\ensuremath\lesssim1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near- Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and a ...

Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; omez-Herrero, R.; ia, Rodr\; Malandraki, O.~E.; Richardson, I.~G.; Posner, A.; Klein, K.; Pacheco, D.; Klassen, A.; Heber, B.; Cohen, C.~M.~S.; Laitinen, T.; Cernuda, I.; Dalla, S.; Lara, Espinosa; Vainio, R.; Köberle, M.; Kühl, R.; Xu, Z.~G.; Berger, L.; Eldrum, S.; Brüdern, M.; Laurenza, M.; Kilpua, E.~J.; Aran, A.; Rouillard, A.~P.; ik, Bu\vc\; Wijsen, N.; Pomoell, J.; Wimmer-Schweingruber, R.~F.; Martin, C.; Böttcher, S.~I.; von Forstner, J.~L.; Terasa, J.; Boden, S.; Kulkarni, S.~R.; Ravanbakhsh, A.; Yedla, M.; Janitzek, N.; iguez-Pacheco, Rodr\; Mateo, Prieto; Prieto, S.; Espada, Parra; Polo, Rodr\; in, Mart\; Carcaboso, F.; Mason, G.~M.; Ho, G.~C.; Allen, R.~C.; Andrews, Bruce; Schlemm, C.~E.; Seifert, H.; Tyagi, K.; Lees, W.~J.; Hayes, J.; Bale, S.~D.; Krupar, V.; Horbury, T.~S.; Angelini, V.; Evans, V.; Brien, H.; Maksimovic, M.; Khotyaintsev, Yu.; Vecchio, A.; Steinvall, K.; Asvestari, E.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140937

Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: coronal mass ejections (CMEs); Sun: flares; Interplanetary medium

Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter s DC electric field measurements

Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. \ Aims: In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In p ...

Steinvall, K.; Khotyaintsev, Yu.; Cozzani, G.; Vaivads, A.; Yordanova, E.; Eriksson, A.~I.; Edberg, N.~J.~T.; Maksimovic, M.; Bale, S.~D.; Chust, T.; Krasnoselskikh, V.; Kretzschmar, M.; Lorfèvre, E.; Plettemeier, D.; Sou\vcek, J.; Steller, M.; ak, \vS.; Vecchio, A.; Horbury, T.~S.; Brien, H.; Evans, V.; Fedorov, A.; Louarn, P.; enot, V.; e, Andr\; Lavraud, B.; Rouillard, A.~P.; Owen, C.~J.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140855

Parker Data Used; Solar wind; plasmas; magnetic reconnection; methods: data analysis; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe

A primary goal of the Parker Solar Probe (PSP) Mission is to answer the outstanding question of how the solar corona plasma is heated to the high temperatures needed for the acceleration of the solar wind. Various heating mechanisms have been suggested, but one that is gaining increasing credence is associated with the dissipation of low frequency magnetohyrodynamic (MHD) turbulence. However, the MHD turbulence models come in several flavors: one in which outwardly propagating Alfv\ en waves experience reflection from the la ...

Zank, G.~P.; Zhao, L.; Adhikari, L.; Telloni, D.; Kasper, J.~C.; Bale, S.~D.;

Published by: Physics of Plasmas      Published on: aug

YEAR: 2021     DOI: 10.1063/5.0055692

Parker Data Used

The Formation and Lifetime of Outflows in a Solar Active Region

Active regions are thought to be one contributor to the slow solar wind. Upflows in EUV coronal spectral lines are routinely observed at their boundaries, and provide the most direct way for upflowing material to escape into the heliosphere. The mechanisms that form and drive these upflows, however, remain to be fully characterized. It is unclear how quickly they form, or how long they exist during their lifetimes. They could be initiated low in the atmosphere during magnetic flux emergence, or as a response to processes occ ...

Brooks, David; Harra, Louise; Bale, Stuart; Barczynski, Krzysztof; Mandrini, Cristina; Polito, Vanessa; Warren, Harry;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0917

Solar Physics; Slow solar wind; Solar active regions; Solar energetic particles; 1476; 1873; 1974; 1491; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

First Simultaneous In Situ Measurements of a Coronal Mass Ejection by Parker Solar Probe and STEREO-A

We present the first Parker Solar Probe mission (PSP)-observed coronal mass ejection (CME) that hits a second spacecraft before the end of the PSP encounter, providing an excellent opportunity to study short-term CME evolution. The CME was launched from the Sun on 2019 October 10 and was measured in situ at PSP on 2019 October 13 and at STEREO-A on 2019 October 14. The small, but not insignificant, radial (\raisebox-0.5ex\textasciitilde0.15 au) and longitudinal (\raisebox-0.5ex\textasciitilde8\textdegree) separation between ...

Winslow, Reka; Lugaz, No\; Scolini, Camilla; Galvin, Antoinette;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0821

Solar coronal mass ejections; Heliosphere; 310; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Near-Sun Switchback Boundaries: Dissipation with Solar Distance

The most surprising result from the first solar encounters by the Parker Solar Probe (PSP) is the large amount of brief magnetic field reversals often referred to as switchbacks. Switchbacks have previously been observed further downstream in the solar wind by spacecraft such as Helios 2 at 62 R$_s$ from the Sun. However, these observations lack a distinct proton temperature increase detected inside switchbacks by PSP, implying that they are evolving over time to eventually reach a pressure balance at the switchback boundari ...

Rasca, Anthony; Farrell, William; MacDowall, Robert; Bale, Stuart; Kasper, Justin;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac079f

The Sun; Solar wind; Solar Physics; 1693; 1534; 1476; Parker Data Used

Characteristics of Interplanetary Discontinuities in the Inner Heliosphere Revealed by Parker Solar Probe

We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13-0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. We collected 3948 IDs, including 2511 rotational discontinuities (RDs) and 557 tangential discontinuities (TDs), with the remnant unidentified. The statistical results show that (1) the ID occurrence rate decreases from 200 events per day at 0.13 au to 1 event per day at 0.9 au, following a spatial scali ...

Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; Xu, Y.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac06a1

Interplanetary discontinuities; Solar wind; interplanetary magnetic fields; Magnetohydrodynamics; 820; 1534; 824; 1964; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Multi-spacecraft study of the solar wind at solar minimum: Dependence on latitude and transient outflows

Context. The recent launches of Parker Solar Probe, Solar Orbiter (SO), and BepiColombo, along with several older spacecraft, have provided the opportunity to study the solar wind at multiple latitudes and distances from the Sun simultaneously. \ Aims: We take advantage of this unique spacecraft constellation, along with low solar activity across two solar rotations between May and July 2020, to investigate how the solar wind structure, including the heliospheric current sheet (HCS), varies with latitude. \ Methods: We visua ...

Laker, R.; Horbury, T.~S.; Bale, S.~D.; Matteini, L.; Woolley, T.; Woodham, L.~D.; Stawarz, J.~E.; Davies, E.~E.; Eastwood, J.~P.; Owens, M.~J.; Brien, H.; Evans, V.; Angelini, V.; Richter, I.; Heyner, D.; Owen, C.~J.; Louarn, P.; Fedorov, A.;

Published by: \aap      Published on: aug

YEAR: 2021     DOI: 10.1051/0004-6361/202140679

Sun: coronal mass ejections (CMEs); Solar wind; Sun: heliosphere; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Plasma Properties, Switchback Patches and Low \ensuremath\alpha-Particle Abundance in Slow Alfv\ enic Coronal Hole Wind at 0.13 au

The Parker Solar Probe (PSP) mission presents a unique opportunity to study the near-Sun solar wind closer than any previous spacecraft. During its fourth and fifth solar encounters, PSP had the same orbital trajectory, meaning that solar wind was measured at the same latitudes and radial distances. We identify two streams measured at the same heliocentric distance (\raisebox-0.5ex\textasciitilde0.13au) and latitude (\raisebox-0.5ex\textasciitilde-3.5$^○$) across these encounters to reduce spatial evolution effects. By com ...

Woolley, Thomas; Matteini, Lorenzo; McManus, Michael; Ber\vci\vc, Laura; Badman, Samuel; Woodham, Lloyd; Horbury, Timothy; Bale, Stuart; Laker, Ronan; Stawarz, Julia; Larson, Davin;

Published by: \mnras      Published on: aug

YEAR: 2021     DOI: 10.1093/mnras/stab2281

Sun: heliosphere; Solar wind; magnetic fields; Parker Data Used

Assessing the Role of Interchange Reconnection in Forming Switchbacks

Abrupt deflections of the magnetic field in the solar wind, so called switchbacks, are frequently observed by the Parker Solar Probe (PSP) during its first two orbits and are believed to play an important role in unveiling the nature of solar corona heating and solar wind acceleration in the inner heliosphere. Many attempts were made recently to understand the nature of switchbacks. However, the origin, propagation, and evolution of switchbacks are still under debate. In this study, we attempt to use the linear theory of ...

Liang, H.; Zank, G.~P.; Nakanotani, M.; Zhao, L.;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0a73

Space plasmas; Solar wind; Solar magnetic fields; Parker Data Used; Solar magnetic reconnection; 1544; 1534; 1503; 1504

Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft

In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet, the scarcity of radially aligned CME crossings restricts investigations on the evolution of CME magnetic structures to a few case studies, preventing a comprehensive understanding of CME complexity changes during propagation. In this Letter, we perform numerical simulations of C ...

Scolini, Camilla; Winslow, Reka; Lugaz, No\; Poedts, Stefaan;

Published by: \apjl      Published on: aug

YEAR: 2021     DOI: 10.3847/2041-8213/ac0d58

Solar coronal mass ejections; Solar wind; Parker Data Used; interplanetary magnetic fields; Corotating streams; 310; 1534; 824; 314; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Dynamics of nanodust in the vicinity of a stellar corona: Effect of plasma corotation

Context. In the vicinity of the Sun or other stars, the motion of the coronal and stellar wind plasma must include some amount of corotation, which could affect the dynamics of charged dust particles. In the case of the Sun, this region is now investigated in situ by the Parker Solar Probe. Charged dust particles coming from the vicinity of the Sun can also reach, and possibly be detected by, the Solar Orbiter. \ Aims: We use numerical simulations and theoretical models to study the effect of plasma corotation on the motion ...

Czechowski, A.; Mann, I.;

Published by: \aap      Published on: aug

YEAR: 2021     DOI: 10.1051/0004-6361/202141048

Sun: heliosphere; Solar wind; acceleration of particles; Parker Data Used; Interplanetary medium; circumstellar matter

Large Amplitude Switchback Turbulence: Possible Magnetic Velocity Alignment Structures

Switchbacks are widely acknowledged phenomena observed by the Parker Solar Probe and appear to occur in patches. Previous studies focused on the fluctuations at the magnetic reversals. However, the nature of the fluctuations inside the switchbacks remains unknown. Here we utilize the magnetic field data and plasma data measured by the Parker Solar Probe in the first four encounters. We investigate the fluctuations in the switchback intervals of 100 s with $B_R 0$ at every instant and compare them to the fluctuations in the n ...

Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec6c

Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Flux Ropes, Turbulence, and Collisionless Perpendicular Shock Waves: High Plasma Beta Case

With the onset of solar maximum and the expected increased prevalence of interplanetary shock waves, Parker Solar Probe is likely to observe numerous shocks in the next few years. An outstanding question that has received surprisingly little attention has been how turbulence interacts with collisionless shock waves. Turbulence in the supersonic solar wind is described frequently as a superposition of a majority 2D and a minority slab component. We formulate a collisional perpendicular shock-turbulence transmission problem in ...

Zank, G.; Nakanotani, M.; Zhao, L.; Du, S.; Adhikari, L.; Che, H.; le Roux, J.;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abf7c8

Interplanetary shocks; interplanetary turbulence; 829; 830; Parker Data Used

A Focused Transport-based Kinetic Fractional Diffusion-advection Equation for Energetic Particle Trapping and Reconnection-related Acceleration by Small-scale Magnetic Flux Ropes in the Solar Wind

Analysis of energetic particle inner heliospheric spacecraft data increasingly suggests the existence of anomalous diffusion phenomena that should be addressed to achieve a better understanding of energetic particle transport and acceleration in the expanding solar wind medium. Related to this is fast-growing observational evidence supporting the long-standing prediction from magnetohydrodynamic (MHD) theory and simulations of the presence of an inner heliospheric, dominant quasi-two-dimensional MHD turbulence component that ...

le Roux, J.; Zank, G.;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abf3c6

Interplanetary particle acceleration; Solar wind; Solar magnetic reconnection; 826; 1534; 1504; Parker Data Used

Time evolution of stream interaction region energetic particle spectra in the inner heliosphere

We analyze an energetic proton event associated with a stream interaction region (SIR) that was observed at Parker Solar Probe on day 320 of 2018 when the spacecraft was just 0.34 AU from the Sun. Using the Integrated Science Investigation of the Sun instrument suite, we perform a spectral analysis of the event and show how the observed spectra evolve over the course of the event. We find that the spectra from the first day of the event are much more consistent with local acceleration at a weak compression, while spectra fro ...

Joyce, C.; McComas, D.; Schwadron, N.; Christian, E.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Allen, R.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.; Bale, S.; Kasper, J.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039330

acceleration of particles; Solar wind; magnetic fields; Parker Data Used

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used

Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind

Context. Recent studies of the solar wind sunward of 0.25 AU reveal that it contains quiescent regions, with low-amplitude plasma and magnetic field fluctuations, and a magnetic field direction similar to the Parker spiral. The quiescent regions are thought to have a more direct magnetic connection to the solar corona than other types of solar wind, suggesting that waves or instabilities in the quiescent regions are indicative of the early evolution of the solar wind as it escapes the corona. The quiescent solar wind regions ...

Malaspina, D.; Wilson, L.; Ergun, R.; Bale, S.; Bonnell, J.; Goodrich, K.; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Halekas, J.; Case, A.; Kasper, J.; Larson, D.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202140449

Solar wind; plasmas; instabilities; waves; Parker Data Used

Thin silicon solid-state detectors for energetic particle measurements. Development, characterization, and application on NASA s Parker Solar Probe mission

Context. Silicon solid-state detectors are commonly used for measuring the specific ionization, dE∕dx, in instruments designed for identifying energetic nuclei using the dE∕dx versus total energy technique in space and in the laboratory. The energy threshold and species resolution of the technique strongly depend on the thickness and thickness uniformity of these detectors.
Aims: Research has been carried out to develop processes for fabricating detectors that are thinner than 15 μm, that have a thickness uniform ...

Wiedenbeck, M.; Burnham, J.; Cohen, C.; Cook, W.; Crabill, R.; Cummings, A.; Davis, A.; Kecman, B.; Labrador, A.; Leske, R.; Mewaldt, R.; Rankin, J.; Rusert, M.; Stone, E.; Christian, E.; Goodwin, P.; Link, J.; Nahory, B.; Shuman, S.; von Rosenvinge, T.; Tindall, C.; Black, H.; Bullough, M.; Clarke, N.; Glasson, V.; Greenwood, N.; Hawkins, C.; Johnson, T.; Newton, A.; Richardson, K.; Walsh, S.; Wilburn, C.; Birdwell, B.; Everett, d.; McComas, D.; Weidner, S.; Angold, N.; Schwadron, N.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039754

instrumentation: detectors; Sun: particle emission; acceleration of particles; space vehicles: instruments; Parker Data Used

Parker Solar Probe observations of He/H abundance variations in SEP events inside 0.5 au


Aims: The Parker Solar Probe (PSP) orbit provides an opportunity to study the inner heliosphere at distances closer to the Sun than previously possible. Due to the solar minimum conditions, the initial orbits of PSP yielded only a few solar energetic particle (SEP) events for study. Recently during the fifth orbit, at distances from 0.45 to 0.3 au, the energetic particle suite on PSP, Integrated Science Investigation of the Sun (IS⊙IS), observed a series of six SEP events, adding to the limited number of SEP events ...

Cohen, C.; Christian, E.; Cummings, A.; Davis, A.; Desai, M.; de Nolfo, G.; Giacalone, J.; Hill, M.; Joyce, C.; Labrador, A.; Leske, R.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Mitchell, J.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Vourlidas, A.; Bale, S.; Pulupa, M.; MacDowall, R.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039299

Sun: particle emission; Sun: activity; solar-terrestrial relations; Parker Data Used

Applicability of Taylor s hypothesis during Parker Solar Probe perihelia

We investigate the validity of Taylor s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the fir ...

Perez, Jean; Bourouaine, Sofiane; Chen, Christopher; Raouafi, Nour;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039879

Solar wind; Sun: heliosphere; turbulence; magnetohydrodynamics (MHD); plasmas; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere

Context. An accurate assessment of the Sun s angular momentum (AM) loss rate is an independent constraint for models that describe the rotation evolution of Sun-like stars.
Aims: In situ measurements of the solar wind taken by Parker Solar Probe (PSP), at radial distances of ~28−55 R, are used to constrain the solar wind AM-loss rate. For the first time with PSP, this includes a measurement of the alpha particle contribution.
Methods: The mechanical AM flux in the solar wind protons (core and be ...

Finley, A.; McManus, M.; Matt, S.; Kasper, J.; Korreck, K.; Case, A.; Stevens, M.; Whittlesey, P.; Larson, D.; Livi, R.; Bale, S.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039288

Solar wind; stars: evolution; stars: winds; outflows; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet

During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale heliospheric current sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5-107 solar radii during encounters 1, 4, and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected ...

Phan, T.; Lavraud, B.; Halekas, J.; Øieroset, M.; Drake, J.; Eastwood, J.; Shay, M.; Pyakurel, P.; Bale, S.; Larson, D.; Livi, R.; Whittlesey, P.; Rahmati, A.; Pulupa, M.; McManus, M.; Verniero, J.; Bonnell, J.; Schwadron, N.; Stevens, M.; Case, A.; Kasper, J.; MacDowall, R.; Szabo, P.; Koval, A.; Korreck, K.; de Wit, Dudok; Malaspina, D.; Goetz, K.; Harvey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039863

Sun: magnetic fields; Sun: heliosphere; Solar wind; Sun: flares; Parker Data Used

Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters

Context.
Aims: We systematically search for magnetic flux rope structures in the solar wind to within the closest distance to the Sun of ~0.13 AU, using data from the third and fourth orbits of the Parker Solar Probe.
Methods: We extended our previous magnetic helicity-based technique of identifying magnetic flux rope structures. The method was improved upon to incorporate the azimuthal flow, which becomes larger as the spacecraft approaches the Sun.
Results: A total of 21 and 34 magnetic flux ropes are ...

Zhao, L.; Zank, G.; Hu, Q.; Telloni, D.; Chen, Y.; Adhikari, L.; Nakanotani, M.; Kasper, J.; Huang, J.; Bale, S.; Korreck, K.; Case, A.; Stevens, M.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Larson, D.; Livi, R.; Whittlesey, P.; Klein, K.; Raouafi, N.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039298

Solar wind; Sun: magnetic fields; turbulence; methods: observational; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Wave-particle energy transfer directly observed in an ion cyclotron wave

Context. The first studies with Parker Solar Probe (PSP) data have made significant progress toward understanding of the fundamental properties of ion cyclotron waves in the inner heliosphere. The survey mode particle measurements of PSP, however, did not make it possible to measure the coupling between electromagnetic fields and particles on the time scale of the wave periods.
Aims: We present a novel approach to study wave-particle energy exchange with PSP.
Methods: We used the Flux Angle operation mode of th ...

Vech, D.; Martinovic, M.; Klein, K.; Malaspina, D.; Bowen, T.; Verniero, J.; Paulson, K.; de Wit, Dudok; Kasper, J.; Huang, J.; Stevens, M.; Case, A.; Korreck, K.; Mozer, F.; Goodrich, K.; Bale, S.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; Bonnell, J.; Harvey, P.; Goetz, K.; MacDowall, R.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039296

Solar wind; waves; turbulence; Physics - Space Physics; Physics - Plasma Physics; Parker Data Used

Magnetic field line random walk and solar energetic particle path lengths. Stochastic theory and PSP/ISoIS observations

Context. In 2020 May-June, six solar energetic ion events were observed by the Parker Solar Probe/IS⊙IS instrument suite at ≈0.35 AU from the Sun. From standard velocity-dispersion analysis, the apparent ion path length is ≈0.625 AU at the onset of each event.
Aims: We develop a formalism for estimating the path length of random-walking magnetic field lines to explain why the apparent ion path length at an event onset greatly exceeds the radial distance from the Sun for these events.
Methods: We developed ...

Chhiber, R.; Matthaeus, W.; Cohen, C.; Ruffolo, D.; Sonsrettee, W.; Tooprakai, P.; Seripienlert, A.; Chuychai, P.; Usmanov, A.; Goldstein, M.; McComas, D.; Leske, R.; Christian, E.; Mewaldt, R.; Labrador, A.; al., et;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: "10.1051/0004-6361/202039816"

Parker Data Used; parker solar probe; Solar Probe Plus

Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe


Aims: We studied the properties and occurrence of narrowband whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe.
Methods: We used Digital Fields Board band-pass filtered (BPF) data from FIELDS to detect the signatures of whistler waves. Additionally parameters derived from the particle distribution functions measured by the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite were used to investigate the plasm ...

Jagarlamudi, V.; de Wit, Dudok; Froment, C.; Krasnoselskikh, V.; Larosa, A.; Bercic, L.; Agapitov, O.; Halekas, J.; Kretzschmar, M.; Malaspina, D.; Moncuquet, M.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039808

waves; scattering; plasmas; Sun: heliosphere; magnetic fields; Physics - Space Physics; Parker Data Used

Alfvenic versus non-Alfvenic turbulence in the inner heliosphere as observed by Parker Solar Probe

Context. Parker Solar Probe (PSP) measures the magnetic field and plasma parameters of the solar wind at unprecedentedly close distances to the Sun. These data provide great opportunities to study the early-stage evolution of magnetohydrodynamic (MHD) turbulence in the solar wind.
Aims: In this study, we make use of the PSP data to explore the nature of solar wind turbulence focusing on the Alfvénic character and power spectra of the fluctuations and their dependence on the distance and context (i.e., large-scale sol ...

Shi, C.; Velli, M.; Panasenco, O.; Tenerani, A.; eville, V.; Bale, S.; Kasper, J.; Korreck, K.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Case, A.; Larson, D.; Verniero, J.; Livi, R.; Stevens, M.; al., et;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: "10.1051/0004-6361/202039818"

Parker Data Used; parker solar probe; Solar Probe Plus

The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2

Context. We investigated the source of a type III radio burst storm during encounter 2 of NASA s Parker Solar Probe (PSP) mission.
Aims: It was observed that in encounter 2 of NASA s PSP mission there was a large amount of radio activity and, in particular, a noise storm of frequent, small type III bursts from 31 March to 6 April 2019. Our aim is to investigate the source of these small and frequent bursts.
Methods: In order to do this, we analysed data from the Hinode EUV Imaging Spectrometer, PSP FIELDS, and ...

Harra, L.; Brooks, D.; Bale, S.; Mandrini, C.; Barczynski, K.; Sharma, R.; Badman, S.; Domínguez, Vargas; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039514

Sun: corona; Solar wind; Sun: radio radiation; Sun: abundances; Sun: atmosphere; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Periodicities in an active region correlated with Type III radio bursts observed by Parker Solar Probe

Context. Periodicities have frequently been reported across many wavelengths in the solar corona. Correlated periods of ~5 min, comparable to solar p-modes, are suggestive of coupling between the photosphere and the corona.
Aims: Our study investigates whether there are correlations in the periodic behavior of Type III radio bursts which are indicative of nonthermal electron acceleration processes, and coronal extreme ultraviolet (EUV) emission used to assess heating and cooling in an active region when there are no l ...

Cattell, Cynthia; Glesener, Lindsay; Leiran, Benjamin; Dombeck, John; Goetz, Keith; Oliveros, Juan; Badman, Samuel; Pulupa, Marc; Bale, Stuart;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039510

Sun: radio radiation; Sun: corona; Sun: X-rays; gamma rays; Sun: oscillations; magnetic reconnection; radiation mechanisms: non-thermal; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe

Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes.
Aims: We report the direct piece of evidence for magnetic reconnection occurring at the boundaries of three switchbacks crossed by PSP at a distance of 45 to 48 solar radii to the Sun during its first encounter.
Methods: We anal ...

Froment, C.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Fargette, N.; Lavraud, B.; Larosa, A.; Kretzschmar, M.; Jagarlamudi, V.; Velli, M.; Malaspina, D.; Whittlesey, P.; Bale, S.; Case, A.; Goetz, K.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Mozer, F.; Pulupa, M.; Revillet, C.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039806

Sun: heliosphere; Solar wind; magnetic fields; magnetic reconnection; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Switchbacks: statistical properties and deviations from Alfvénicity

Context. Parker Solar Probe s first solar encounter has revealed the presence of sudden magnetic field deflections in the slow Alfvénic solar wind. These structures, which are often called switchbacks, are associated with proton velocity enhancements.
Aims: We study their statistical properties with a special focus on their boundaries.
Methods: Using data from SWEAP and FIELDS, we investigate particle and wavefield properties. The magnetic boundaries are analyzed with the minimum variance technique.
Res ...

Larosa, A.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Froment, C.; Jagarlamudi, V.; Velli, M.; Bale, S.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039442

Solar wind; magnetic fields; waves; magnetohydrodynamics (MHD); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

In-flight Calibration and Data Reduction for the WISPR Instrument On Board the PSP Mission

We present the calibration status and data reduction methodology for the Wide Field Imager for Solar Probe (WISPR) on board the Parker Solar Probe (PSP) mission. In particular, we describe the process for converting a raw image, measured in digital numbers (DN), to a calibrated image, measured in mean solar brightness (MSB). We also discuss details of the on board image processing including bias removal, the linearity of the electronics, pointing, geometric distortion, and photometric calibration using stellar measurements, ...

Hess, Phillip; Howard, Russell; Stenborg, Guillermo; Linton, Mark; Vourlidas, Angelos; Thernisien, Arnaud; Colaninno, Robin; Rich, Nathan; Wang, Dennis; Battams, Karl; Kuroda, Natsuha;

Published by: Solar Physics      Published on: 06/2021

YEAR: 2021     DOI: 10.1007/s11207-021-01847-9

instrumentation; Data management; Parker Data Used

Stellar versus Galactic: the intensity of cosmic rays at the evolving Earth and young exoplanets around Sun-like stars

Energetic particles, such as stellar cosmic rays, produced at a heightened rate by active stars (like the young Sun) may have been important for the origin of life on Earth and other exoplanets. Here, we compare, as a function of stellar rotation rate (Ω), contributions from two distinct populations of energetic particles: stellar cosmic rays accelerated by impulsive flare events and Galactic cosmic rays. We use a 1.5D stellar wind model combined with a spatially 1D cosmic ray transport model. We formulate the evolution of ...

Rodgers-Lee, D.; Taylor, A.; Vidotto, A.; Downes, T.;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 06/2021

YEAR: 2021     DOI: 10.1093/mnras/stab935

diffusion; methods: numerical; Sun: evolution; stars: magnetic field; cosmic rays; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - High Energy Astrophysical Phenomena



  3      4      5      6      7      8