PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 176 entries in the Bibliography.


Showing entries from 151 through 176


2015

Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP

Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP

Propulsion technology assessment: Science and enabling technologies to explore the interstellar medium

As part of a larger effort led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025 to 2035 launch window. The advanced propulsion system tr ...

Hopkins, Randall; Thomas, Herbert; Wiegmann, Bruce; Heaton, Andrew; Johnson, Les; Baysinger, Michael; Beers, Benjamin;

Published by: AIAA SPACE 2015 Conference and Exposition      Published on:

YEAR: 2015     DOI:

Antennas; Earth (planet); Hall effect devices; Hall thrusters; Heat shielding; Interplanetary flight; NASA; Small satellites; Solar equipment; Solar radiation; Sun; Tetherlines; Trajectories; Parker Engineering

Propulsion technology assessment: Science and enabling technologies to explore the interstellar medium

As part of a larger effort led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025 to 2035 launch window. The advanced propulsion system tr ...

Hopkins, Randall; Thomas, Herbert; Wiegmann, Bruce; Heaton, Andrew; Johnson, Les; Baysinger, Michael; Beers, Benjamin;

Published by: AIAA SPACE 2015 Conference and Exposition      Published on:

YEAR: 2015     DOI:

Antennas; Earth (planet); Hall effect devices; Hall thrusters; Heat shielding; Interplanetary flight; NASA; Small satellites; Solar equipment; Solar radiation; Sun; Tetherlines; Trajectories; Parker Engineering

Glass surface spall size resulting from interplanetary dust impacts

The size of relatively large dynamic conchoidal fractures, i.e., surface spalls, immediately adjacent to and around interplanetary dust (IDP) hypervelocity impact (HVI) craters or pits in glass substrates is relevant to spacecraft solar cell and science instrument lens performance metrics, as well as glass pane design and safety in manned missions. This paper presents an analysis of the diameter of surface spalls in glass for the Solar Probe Plus (SPP) spacecraft, whose solar arrays and instruments must survive a 7-year miss ...

Iyer, Kaushik; Mehoke, Douglas; Chadegani, Alireza; Batra, Romesh;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2015     DOI:

Ballistics; Dust; Glass; Particle size analysis; Solar cell arrays; Spalling; Substrates; Parker Engineering

Glass Surface Spall Size Resulting From Interplanetary Dust Impacts

The size of relatively large dynamic conchoidal fractures, i.e., surface spalls, immediately adjacent to and around interplanetary dust (IDP) hypervelocity impact (HVI) craters or pits in glass substrates is relevant to spacecraft solar cell and science instrument lens performance metrics, as well as glass pane design and safety in manned missions. This paper presents an analysis of the diameter of surface spalls in glass for the Solar Probe Plus (SPP) spacecraft, whose solar arrays and instruments must survive a 7-year miss ...

Iyer, Kaushik; Mehoke, Douglas; Chadegani, Alireza; Batra, Romesh;

Published by:       Published on:

YEAR: 2015     DOI: 10.1109/AERO.2015.7119067

Parker Data Used

2014

THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE

Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfv\ enic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a ...

Klein, K.; Howes, G.; TenBarge, J.;

Published by: The Astrophysical Journal      Published on: 08/2014

YEAR: 2014     DOI: 10.1088/2041-8205/790/2/L20

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; turbulence; waves

VALIDITY OF THE TAYLOR HYPOTHESIS FOR LINEAR KINETIC WAVES IN THE WEAKLY COLLISIONAL SOLAR WIND

The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis\textemdashthat temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame\textemdashis often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such ...

Howes, G.; Klein, K.; TenBarge, J.;

Published by: The Astrophysical Journal      Published on: 07/2014

YEAR: 2014     DOI: 10.1088/0004-637X/789/2/106

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Solar Probe Plus; Solar wind; turbulence

INBOUND WAVES IN THE SOLAR CORONA: A DIRECT INDICATOR OF ALFV\ EN SURFACE LOCATION

The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary\textemdashthe Alfv\ en surface\textemdashthat marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfv\ en surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfv\ en speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar co ...

Deforest, C.; Howard, T.; McComas, D.;

Published by: The Astrophysical Journal      Published on: 06/2014

YEAR: 2014     DOI: 10.1088/0004-637X/787/2/124

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: fundamental parameters; techniques: image processing

Interplanetary dust particle shielding capability of spacecraft multi-layer insulation

The Solar Probe Plus (SPP) spacecraft is expected to encounter unprecedented levels of interplanetary dust particle (IDP) exposure during its approximately 7-year journey. To assure mission success it is necessary to define the dust hypervelocity impact (HVI) protection levels provided by its Multi-Layer Insulation (MLI)/thermal blankets with a reliability that is on par with that available for metallic Whipple shields. Development of a new ballistic limit equation (BLE) in the 7-150 km/s HVI range for representative 2-wall ...

Iyer, Kaushik; Mehoke, Douglas; Batra, Romesh;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2014     DOI:

Aluminum alloys; Ballistics; Dust; Fused silica; Particle size; Particle size analysis; Polyimides; Ternary alloys; Titanium alloys; Parker Engineering

Outgassing modeling for solar probe plus

The spacecraft for the Solar Probe Plus mission, due to launch in 2018, will encounter an extreme near-Sun thermal and plasma environment. Outgassing of materials such as silicone adhesives in this previously unexplored environment can result in deposits on solar arrays, instrument components, and other sensitive spacecraft surfaces. Array surfaces exposed to UV can cause those deposits to be fixed to the surface, degrading their performance. To assess the severity of the deposits, the Solar Probe Plus program has undertaken ...

Donegan, M.; Nichols, J.;

Published by: 28th Space Simulation Conference - Extreme Environments: Pushing the Boundaries      Published on:

YEAR: 2014     DOI:

Adhesives; Deposits; Silicones; Solar cell arrays; Parker Engineering

Solar probe plus solar array cooling system T-Vac test

The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the Solar Probe Plus (SPP) spacecraft and managing the project for NASA s Living with a Star (LWS) program. The main objectives of the SPP mission are to understand the Sun s coronal magnetic field, the causes of solar corona and solar wind heating and acceleration, and the mechanisms of energetic particles acceleration and transportation. To achieve these objectives, the SPP spacecraft needs to make in-situ measurements in ...

Cho, Wei-Lin; Ercol, Carl;

Published by: 28th Space Simulation Conference - Extreme Environments: Pushing the Boundaries      Published on:

YEAR: 2014     DOI:

Cooling systems; Interplanetary flight; NASA; Probes; Software testing; Solar energy; Spacecraft; Thermoelectric equipment; Waste heat; Parker Engineering

2013

SPIE ProceedingsDevelopment and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus

Korendyke, Clarence; Vourlidas, Angelos; Plunkett, Simon; Howard, Russell; Wang, Dennis; Marshall, Cheryl; Waczynski, Augustyn; Janesick, James; Elliott, Thomas; Tun, Samuel; Tower, John; Grygon, Mark; Keller, David; Clifford, Gregory;

Published by:       Published on: 10/2013

YEAR: 2013     DOI: 10.1117/12.2027655

APS; CMOS; Radiation; Solar Orbiter; Solar Probe Plus

SPIE ProceedingsSeeing the corona with the solar probe plus mission: the wide-field imager for solar probe+ (WISPR)

Vourlidas, Angelos; Howard, Russell; Plunkett, Simon; Korendyke, Clarence; Carter, Michael; Thernisien, Arnaud; Chua, Damien; Van Duyne, Peter; Socker, Dennis; Linton, Mark; Liewer, Paulett; Hall, Jeffrey; Morrill, Jeff; DeJong, Eric; Mikic, Zoran; Rochus, Pierre; Bothmer, Volker; Rodman, Jens; Lamy, Philippe;

Published by:       Published on: 09/2013

YEAR: 2013     DOI: 10.1117/12.2027508

Heliospheric imager; Imaging; Parker Data Used; Solar corona; Solar Probe Plus; Solar wind; Thomson scattering

AIP Conference ProceedingsTemperature anisotropy instabilities; combining plasma and magnetic field data at different distances from the Sun

We present a new data analysis method enabling the observation of magnetic field fluctuations associated with temperature anisotropy instabilities using the Ulysses spacecraft. The movement of the spacecraft away from the Sun causes the observed plasma conditions, turbulent fluctuation amplitude, magnetic field strength and important physical scales to change. We normalize wavelet power spectra of the magnetic field using local values for the proton gyroscale and large scale magnetic field fluctuation amplitude to remove ...

Wicks, Robert; Matteini, Lorenzo; Horbury, Timothy; Hellinger, Petr; Roberts, Aaron;

Published by:       Published on: 07/2013

YEAR: 2013     DOI: 10.1063/1.4811048

96.50.Ci; 96.60.Hv; 96.60.Tf; 96.60.Vg; astrophysical plasma; data analysis; parker solar probe; plasma instability; solar magnetism; Solar Probe Plus; solar spectra; Solar wind; Solar wind plasma; sources of solar wind; wavelet transforms

Selection of Critical Design Parameters for MMOD Protection in Interplanetary Missions

This paper presents a methodology for the selection of critical design-parameters for the design of Micro Meteoroid and Orbital Debris (MMOD) spacecraft protection based on a modified implementation of the concept of the Probability of No Impact (PNI). The PNI methodology, based on Poisson s discrete statistics, has been widely used to determine critical particle sizes for the design of protection systems. However, it does not provide guidelines for the selection of the design impact speed, especially when the impact speed h ...

Carrasco, Cesar; Mendez, Sergio; Mehoke, Douglas;

Published by:       Published on:

YEAR: 2013     DOI: 10.1016/j.proeng.2013.05.066

Parker Data Used

Hypervelocity Impact Response of Ti-6Al-4V and Commercially Pure Titanium

Titanium alloy, Ti-6Al-4V, and commercially pure (CP) Titanium will be used to protect the Solar Probe Plus (SPP) spacecraft against hypervelocity impacts by solar dust particles. The results of six hypervelocity impact (HVI) tests performed on Ti-6Al-4V and CP monolithic samples (3 each) arc evaluated in terms of cratering and spall damage, and compared with crater depth and spall initiation predictions using the Ballistic Limit Equation (BLE) for Titanium shields developed at NASA Johnson Space Center and hydrocode computa ...

Iyer, Kaushik; Poormon, Kevin; Deacon, Ryan; Mehoke, Douglas; Swaminathan, P.; Brown, Robert;

Published by:       Published on:

YEAR: 2013     DOI: 10.1016/j.proeng.2013.05.016

Parker Data Used

Development and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus

The Naval Research Laboratory is developing next generation CMOS imaging arrays for the Solar Orbiter and Solar Probe Plus missions. The device development is nearly complete with flight device delivery scheduled for summer of 2013. The 4Kx4K mosaic array with 10micron pixels is well suited to the panoramic imaging required for the Solar Orbiter mission. The devices are robust (<100krad) and exhibit minimal performance degradation with respect to radiation. The device design and performance are described. © 2013 SPIE.

Korendyke, Clarence; Vourlidas, Angelos; Plunkett, Simon; Howard, Russell; Wang, Dennis; Marshall, Cheryl; Waczynski, Augustyn; Janesick, James; Elliot, Thomas; Tuna, Samuel; Tower, John; Grygon, Mark; Keller, David; Clifford, Gregory;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2013     DOI:

CMOS integrated circuits; Heat radiation; Probes; Research laboratories; Parker Engineering

2012

Use of hydrocode modeling to develop advanced MMOD shielding designs

A multi-physics computations-based methodology for space debris hypervelocity impact (HVI) damage mitigation is presented. Specifically, improved debris mitigation through development of innovative, lightweight structural designs is described. The methodology has been applied to the design of the Solar Probe Plus (SPP) spacecraft to mitigate extreme solar microdust hypervelocity impacts (50-300 km/s) by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). The methodology combines hydrocode computations of the c ...

Iyer, Kaushik; Swaminathan, P.K.; Mehoke, Douglas; Carrasco, Cesar; Brown, Robert; Batra, Romesh;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2012     DOI:

Space debris; Structural design; Parker Engineering

Active solar array thermal control system for the solar probe plus spacecraft

The Solar Probe Plus (SPP) spacecraft will orbit the Sun closer than any other previous probe. As dictated by the current mission design, the spacecraft will achieve many perihelia as close as 9.5 RS from the Sun. During those passes, it will encounter a solar flux of ~500 suns, or 70 W/cm2. This flux is more than 50 times larger than the solar heating seen by any previous spacecraft. During the entire mission, the spacecraft and science instruments will be protected by a Thermal Protection System (TPS), and elect ...

Ercol, Carl; Guyette, Greg; Cho, Wei-Lin;

Published by: 42nd International Conference on Environmental Systems 2012, ICES 2012      Published on:

YEAR: 2012     DOI:

Cooling; Cooling systems; Flight control systems; Probes; Solar cell arrays; Spacecraft; Thermoelectric equipment; Waste heat; Parker Engineering

A review of the Solar Probe Plus dust protection approach

The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before, which has required the development of new thermal and micrometeoroid protection technologies. During the 24 solar orbits of the mission, the spacecraft will encounter a thermal environment that is 50 times more severe than any previous spacecraft. It will also travel through a dust environment previously unexplored, and be subject to particle hypervelocity impacts (HVI) at velocities much larger than anything previously e ...

Mehoke, Douglas; Brown, Robert; Swaminathan, P.K.; Kerley, Gerald; Carrasco, Cesar; Iyer, Kaushik;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2012     DOI:

Dust; Earth (planet); Interplanetary flight; Particle size analysis; Probes; Space debris; Spacecraft; Parker Engineering

Hyper velocity protection developments on the solar probe plus mission

The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before. The mission includes both solar flux and micrometeoroid environments much more severe than anything experienced by previous spacecraft. As a result, new analytical and testing methodologies are being developed to ensure the success of the mission. One of the major efforts is the development of an analytical approach for hypervelocity impacts (HVI) at speeds up to 300 km/s. To date, this dust study has made several notable ...

Mehoke, Douglas; Swaminathan, P.K.; Carrasco, Cesar; Brown, Robert; Iyer, Kaushik;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2012     DOI:

Cooling systems; Dust; Earth (planet); Equations of state; Interplanetary flight; Probes; Thermoelectric equipment; Parker Engineering

Use of Hydrocode Modeling to Develop Advanced MMOD Shielding Designs

A multi-physics computations-based methodology for space debris hypervelocity impact (HVI) damage mitigation is presented. Specifically, improved debris mitigation through development of innovative, lightweight structural designs is described. The methodology has been applied to the design of the Solar Probe Plus (SPP) spacecraft to mitigate extreme solar microdust hypervelocity impacts (50-300 km/s) by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). The methodology combines hydrocode computations of the c ...

Iyer, Kaushik; Mehoke, Douglas; Brown, Robert; Swaminathan, P.; Carrasco, Cesar; Batra, Romesh;

Published by:       Published on:

YEAR: 2012     DOI: 10.1109/AERO.2012.6187075

Parker Data Used

2010

Ceramic coatings for the solar probe plus mission

A study was conducted to develop the coatings needed to protect the Solar Probe Plus Thermal Protection System (TPS) from the harsh environment. The TPS encountered harsh environment during its mission close to the sun, facing significant solar fluxes. The first part of the study addressed the way a coating s microstructure affected its optical properties and the way coatings were designed to maintain the right microstructure over temperature. The study was led by a researcher from the Advanced Technology Laboratory of the W ...

Mehoke, D.; Congdon, E.; , Drewry; Eddins, C.; Deacon, R.; Wolf, T.; Hahn, D.; King, D.; Nagle, D.; Buchta, M.; Zhang, D.; Hemker, K.; Spicer, J.; Jones, J.; Ryan, S.; Schlichter, G.;

Published by: Johns Hopkins APL Technical Digest (Applied Physics Laboratory)      Published on:

YEAR: 2010     DOI:

Grain growth; Microstructure; Optical properties; Probes; Parker Engineering

An active cooling system for the solar probe power system

The Solar Probe Plus (SPP) spacecraft will orbit the Sun closer than any other previous probe. As dictated by the current mission design, the spacecraft will achieve many perihelia as close as 9.5 RS from the Sun. During those passes, it will encounter a solar flux of ~500 suns, or 70 W/cm2. This flux is more than 50 times larger than the solar heating seen by any previous spacecraft. During the entire mission, the spacecraft and science instruments will be protected by a Thermal Protection System (TPS) ...

Lockwood, Mary; Ercol, Carl; Cho, Wei-Lin; Hartman, David; Adamson, Gary;

Published by: 40th International Conference on Environmental Systems, ICES 2010      Published on:

YEAR: 2010     DOI:

Cooling; Cooling systems; Orbits; Probes; Spacecraft; Testing; Thermoelectric equipment; Waste heat; Parker Engineering

Development of a high-temperature optical coating for thermal management on solar probe plus

NASA s Solar Probe Plus (SPP) is approaching within 9.5 solar radii from the center of the sun. The SPP thermal protection system (TPS) is a 2.7 meter heat shield. The heat shield reaches temperatures of 1400°C on its front surface, its worst thermal case, and is subjected to launch loads, its worst mechanical case. The front surface of the thermal protection system is coated with an optically white coating in order to reduce the front surface temperature of the TPS and reduce the resulting heat flow into the spacecraft. ...

Congdon, Elizabeth; Mehoke, Douglas; Buchta, Mark; Nagle, Dennis; Zhang, Dajie; Spicer, James;

Published by: 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference      Published on:

YEAR: 2010     DOI:

Heat shielding; Heat transfer; NASA; Optical coatings; Probes; Thermal insulating materials; Thermal variables control; Parker Engineering



  1      2      3      4