PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3005 entries in the Bibliography.


Showing entries from 101 through 150


2021

A powerful machine learning technique to extract proton core, beam, and \ensuremath\alpha-particle parameters from velocity distribution functions in space plasmas

Context. The analysis of the thermal part of velocity distribution functions (VDFs) is fundamentally important for understanding the kinetic physics that governs the evolution and dynamics of space plasmas. However, calculating the proton core, beam, and \ensuremath\alpha-particle parameters for large data sets of VDFs is a time-consuming and computationally demanding process that always requires supervision by a human expert. \ Aims: We developed a machine learning tool that can extract proton core, beam, and \ensuremath\al ...

Vech, D.; Stevens, M.~L.; Paulson, K.~W.; Malaspina, D.~M.; Case, A.~W.; Klein, K.~G.; Kasper, J.~C.;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202141063

Parker Data Used; turbulence; plasmas; waves; methods: statistical; Physics - Space Physics; Astrophysics - Instrumentation and Methods for Astrophysics; Physics - Plasma Physics

Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU

Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (\ensuremath\Phi$_H$) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the s ...

Badman, Samuel; Bale, Stuart; Rouillard, Alexis; Bowen, Trevor; Bonnell, John; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202039407

Parker Data Used; Sun: corona; Sun: magnetic fields; Sun: heliosphere; Solar wind; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU

Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (\ensuremath\Phi$_H$) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the s ...

Badman, Samuel; Bale, Stuart; Rouillard, Alexis; Bowen, Trevor; Bonnell, John; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202039407

Parker Data Used; Sun: corona; Sun: magnetic fields; Sun: heliosphere; Solar wind; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU

Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (\ensuremath\Phi$_H$) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the s ...

Badman, Samuel; Bale, Stuart; Rouillard, Alexis; Bowen, Trevor; Bonnell, John; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202039407

Parker Data Used; Sun: corona; Sun: magnetic fields; Sun: heliosphere; Solar wind; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU

Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (\ensuremath\Phi$_H$) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the s ...

Badman, Samuel; Bale, Stuart; Rouillard, Alexis; Bowen, Trevor; Bonnell, John; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202039407

Parker Data Used; Sun: corona; Sun: magnetic fields; Sun: heliosphere; Solar wind; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU

Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (\ensuremath\Phi$_H$) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the s ...

Badman, Samuel; Bale, Stuart; Rouillard, Alexis; Bowen, Trevor; Bonnell, John; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202039407

Parker Data Used; Sun: corona; Sun: magnetic fields; Sun: heliosphere; Solar wind; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

The Electron Structure of the Solar Wind

Time-series measurements of the number density ncore and temperature Tcore of the core-electron population of the solar wind are examined at 1 AU and at 0.13 AU using measurements from the WIND and Parker Solar Probe spacecraft, respectively. A statistical analysis of the ncore and Tcore measurements at 1 AU finds that the core-electron spatial structure of the solar wind is related to the magnetic-flux-tube structure of the solar wind; this electron structure is characterized by jumps in the values of ncore and Tcore when p ...

Borovsky, Joseph; Halekas, Jasper; Whittlesey, Phyllis;

Published by: Frontiers in Astronomy and Space Sciences      Published on: jun

YEAR: 2021     DOI: 10.3389/fspas.2021.690005

Parker Data Used; Solar wind; Heliosphere; interplanetary potential; Corona; Magnetic structure

The Electron Structure of the Solar Wind

Time-series measurements of the number density ncore and temperature Tcore of the core-electron population of the solar wind are examined at 1 AU and at 0.13 AU using measurements from the WIND and Parker Solar Probe spacecraft, respectively. A statistical analysis of the ncore and Tcore measurements at 1 AU finds that the core-electron spatial structure of the solar wind is related to the magnetic-flux-tube structure of the solar wind; this electron structure is characterized by jumps in the values of ncore and Tcore when p ...

Borovsky, Joseph; Halekas, Jasper; Whittlesey, Phyllis;

Published by: Frontiers in Astronomy and Space Sciences      Published on: jun

YEAR: 2021     DOI: 10.3389/fspas.2021.690005

Parker Data Used; Solar wind; Heliosphere; interplanetary potential; Corona; Magnetic structure

Small-scale Magnetic Flux Ropes with Field-aligned Flows via the PSP In Situ Observations

Magnetic flux rope, formed by the helical magnetic field lines, can sometimes maintain its shape while carrying significant plasma flow that is aligned with the local magnetic field. We report the existence of such structures and static flux ropes by applying the Grad-Shafranov-based algorithm to the Parker Solar Probe in situ measurements in the first five encounters. These structures are detected at heliocentric distances, ranging from 0.13 to 0.66 au, in a 4-month time period. We find that flux ropes with field-aligned fl ...

Chen, Yu; Hu, Qiang; Zhao, Lingling; Kasper, Justin; Huang, Jia;

Published by: \apj      Published on: jun

YEAR: 2021     DOI: 10.3847/1538-4357/abfd30

Parker Data Used; Solar wind; Astronomy data analysis; interplanetary turbulence; Solar magnetic reconnection; Solar magnetic fields; 1534; 1858; 830; 1504; 1503; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Small-scale Magnetic Flux Ropes with Field-aligned Flows via the PSP In Situ Observations

Magnetic flux rope, formed by the helical magnetic field lines, can sometimes maintain its shape while carrying significant plasma flow that is aligned with the local magnetic field. We report the existence of such structures and static flux ropes by applying the Grad-Shafranov-based algorithm to the Parker Solar Probe in situ measurements in the first five encounters. These structures are detected at heliocentric distances, ranging from 0.13 to 0.66 au, in a 4-month time period. We find that flux ropes with field-aligned fl ...

Chen, Yu; Hu, Qiang; Zhao, Lingling; Kasper, Justin; Huang, Jia;

Published by: \apj      Published on: jun

YEAR: 2021     DOI: 10.3847/1538-4357/abfd30

Parker Data Used; Solar wind; Astronomy data analysis; interplanetary turbulence; Solar magnetic reconnection; Solar magnetic fields; 1534; 1858; 830; 1504; 1503; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU

\ Aims: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of \raisebox-0.5ex\textasciitilde0.2 f$_ce$ (electron cyclotron frequency) are commonly observed at 1 AU, and they are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.3 AU and how their properties compare to those at 1 AU. \ Methods: We utilized the waveform capture data from the Parker Solar Probe Fields instrument from Encounters 1 through 4 to deve ...

Cattell, C.; Short, B.; Breneman, A.; Halekas, J.; Whittesley, P.; Larson, D.; Kasper, J.; Stevens, M.; Case, T.; , al;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039550"

Parker Data Used; parker solar probe; Solar Probe Plus

Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU

\ Aims: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of \raisebox-0.5ex\textasciitilde0.2 f$_ce$ (electron cyclotron frequency) are commonly observed at 1 AU, and they are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.3 AU and how their properties compare to those at 1 AU. \ Methods: We utilized the waveform capture data from the Parker Solar Probe Fields instrument from Encounters 1 through 4 to deve ...

Cattell, C.; Short, B.; Breneman, A.; Halekas, J.; Whittesley, P.; Larson, D.; Kasper, J.; Stevens, M.; Case, T.; , al;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039550"

Parker Data Used; parker solar probe; Solar Probe Plus

Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU

\ Aims: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of \raisebox-0.5ex\textasciitilde0.2 f$_ce$ (electron cyclotron frequency) are commonly observed at 1 AU, and they are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.3 AU and how their properties compare to those at 1 AU. \ Methods: We utilized the waveform capture data from the Parker Solar Probe Fields instrument from Encounters 1 through 4 to deve ...

Cattell, C.; Short, B.; Breneman, A.; Halekas, J.; Whittesley, P.; Larson, D.; Kasper, J.; Stevens, M.; Case, T.; , al;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039550"

Parker Data Used; parker solar probe; Solar Probe Plus

Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU

\ Aims: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of \raisebox-0.5ex\textasciitilde0.2 f$_ce$ (electron cyclotron frequency) are commonly observed at 1 AU, and they are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.3 AU and how their properties compare to those at 1 AU. \ Methods: We utilized the waveform capture data from the Parker Solar Probe Fields instrument from Encounters 1 through 4 to deve ...

Cattell, C.; Short, B.; Breneman, A.; Halekas, J.; Whittesley, P.; Larson, D.; Kasper, J.; Stevens, M.; Case, T.; , al;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039550"

Parker Data Used; parker solar probe; Solar Probe Plus

Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU

\ Aims: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of \raisebox-0.5ex\textasciitilde0.2 f$_ce$ (electron cyclotron frequency) are commonly observed at 1 AU, and they are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.3 AU and how their properties compare to those at 1 AU. \ Methods: We utilized the waveform capture data from the Parker Solar Probe Fields instrument from Encounters 1 through 4 to deve ...

Cattell, C.; Short, B.; Breneman, A.; Halekas, J.; Whittesley, P.; Larson, D.; Kasper, J.; Stevens, M.; Case, T.; , al;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039550"

Parker Data Used; parker solar probe; Solar Probe Plus

Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU

\ Aims: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of \raisebox-0.5ex\textasciitilde0.2 f$_ce$ (electron cyclotron frequency) are commonly observed at 1 AU, and they are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.3 AU and how their properties compare to those at 1 AU. \ Methods: We utilized the waveform capture data from the Parker Solar Probe Fields instrument from Encounters 1 through 4 to deve ...

Cattell, C.; Short, B.; Breneman, A.; Halekas, J.; Whittesley, P.; Larson, D.; Kasper, J.; Stevens, M.; Case, T.; , al;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039550"

Parker Data Used; parker solar probe; Solar Probe Plus

Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU

\ Aims: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of \raisebox-0.5ex\textasciitilde0.2 f$_ce$ (electron cyclotron frequency) are commonly observed at 1 AU, and they are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.3 AU and how their properties compare to those at 1 AU. \ Methods: We utilized the waveform capture data from the Parker Solar Probe Fields instrument from Encounters 1 through 4 to deve ...

Cattell, C.; Short, B.; Breneman, A.; Halekas, J.; Whittesley, P.; Larson, D.; Kasper, J.; Stevens, M.; Case, T.; , al;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039550"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

An Interplanetary Type IIIb Radio Burst Observed by Parker Solar Probe and Its Emission Mechanism

Type IIIb radio bursts were identified as a chain of quasi-periodic striae in dynamic spectra, drifting from high to low frequencies in a manner similar to type III bursts, which fine structures may provide a clue to a better understanding of emission mechanisms. The approaching observation of the Parker Solar Probe (PSP) spacecraft provides a new chance of probing type IIIb bursts in the vicinity of the Sun. In this Letter, combining the in situ measurement of PSP and the empirical model of solar atmospheres in open magneti ...

Chen, Ling; Ma, Bing; Wu, Dejin; Zhao, Guoqing; Tang, Jianfei; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac0b43

Parker Data Used; Solar radio emission; Interplanetary physics; 1522; 827

An Interplanetary Type IIIb Radio Burst Observed by Parker Solar Probe and Its Emission Mechanism

Type IIIb radio bursts were identified as a chain of quasi-periodic striae in dynamic spectra, drifting from high to low frequencies in a manner similar to type III bursts, which fine structures may provide a clue to a better understanding of emission mechanisms. The approaching observation of the Parker Solar Probe (PSP) spacecraft provides a new chance of probing type IIIb bursts in the vicinity of the Sun. In this Letter, combining the in situ measurement of PSP and the empirical model of solar atmospheres in open magneti ...

Chen, Ling; Ma, Bing; Wu, Dejin; Zhao, Guoqing; Tang, Jianfei; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac0b43

Parker Data Used; Solar radio emission; Interplanetary physics; 1522; 827

Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations

The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of Parker Solar Probe (PSP), we present an observation of the anisotropy at kinetic scales in the slow, Alfv\ enic, solar wind in the inner heliosphere. The magnetic compressibility behaves as expected for kinetic Alfv\ enic turbulence below the ion scale. A steepened transition range is found between the inertia ...

Duan, Die; He, Jiansen; Bowen, Trevor; Woodham, Lloyd; Wang, Tieyan; Chen, Christopher; Mallet, Alfred; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac07ac

Parker Data Used; Solar wind; interplanetary turbulence; Alfven waves; 1534; 830; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations

The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of Parker Solar Probe (PSP), we present an observation of the anisotropy at kinetic scales in the slow, Alfv\ enic, solar wind in the inner heliosphere. The magnetic compressibility behaves as expected for kinetic Alfv\ enic turbulence below the ion scale. A steepened transition range is found between the inertia ...

Duan, Die; He, Jiansen; Bowen, Trevor; Woodham, Lloyd; Wang, Tieyan; Chen, Christopher; Mallet, Alfred; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac07ac

Parker Data Used; Solar wind; interplanetary turbulence; Alfven waves; 1534; 830; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations

The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of Parker Solar Probe (PSP), we present an observation of the anisotropy at kinetic scales in the slow, Alfv\ enic, solar wind in the inner heliosphere. The magnetic compressibility behaves as expected for kinetic Alfv\ enic turbulence below the ion scale. A steepened transition range is found between the inertia ...

Duan, Die; He, Jiansen; Bowen, Trevor; Woodham, Lloyd; Wang, Tieyan; Chen, Christopher; Mallet, Alfred; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac07ac

Parker Data Used; Solar wind; interplanetary turbulence; Alfven waves; 1534; 830; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations

The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of Parker Solar Probe (PSP), we present an observation of the anisotropy at kinetic scales in the slow, Alfv\ enic, solar wind in the inner heliosphere. The magnetic compressibility behaves as expected for kinetic Alfv\ enic turbulence below the ion scale. A steepened transition range is found between the inertia ...

Duan, Die; He, Jiansen; Bowen, Trevor; Woodham, Lloyd; Wang, Tieyan; Chen, Christopher; Mallet, Alfred; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac07ac

Parker Data Used; Solar wind; interplanetary turbulence; Alfven waves; 1534; 830; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations

The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of Parker Solar Probe (PSP), we present an observation of the anisotropy at kinetic scales in the slow, Alfv\ enic, solar wind in the inner heliosphere. The magnetic compressibility behaves as expected for kinetic Alfv\ enic turbulence below the ion scale. A steepened transition range is found between the inertia ...

Duan, Die; He, Jiansen; Bowen, Trevor; Woodham, Lloyd; Wang, Tieyan; Chen, Christopher; Mallet, Alfred; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac07ac

Parker Data Used; Solar wind; interplanetary turbulence; Alfven waves; 1534; 830; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Switchback Boundary Dissipation and Relative Age

We examine Parker Solar Probe (PSP) magnetic field and plasma observations during its first encounter with the Sun in early 2018 November. During this perihelion time, impulsive reversals in the magnetic field, called switchbacks, were found in the data set characterized by a quick rotation in B along with a simultaneous increase in solar wind flow. In this work, we examine the structure and morphology of 920 switchback boundaries as PSP enters and exits the structures, specifically looking for evidence of boundary degra ...

Farrell, W.~M.; Rasca, A.~P.; MacDowall, R.~J.; Gruesbeck, J.~R.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac005b

Parker Data Used; Solar wind; Solar Physics; Solar magnetic flux emergence; Solar magnetic fields; 1534; 1476; 2000; 1503

Switchback Boundary Dissipation and Relative Age

We examine Parker Solar Probe (PSP) magnetic field and plasma observations during its first encounter with the Sun in early 2018 November. During this perihelion time, impulsive reversals in the magnetic field, called switchbacks, were found in the data set characterized by a quick rotation in B along with a simultaneous increase in solar wind flow. In this work, we examine the structure and morphology of 920 switchback boundaries as PSP enters and exits the structures, specifically looking for evidence of boundary degra ...

Farrell, W.~M.; Rasca, A.~P.; MacDowall, R.~J.; Gruesbeck, J.~R.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac005b

Parker Data Used; Solar wind; Solar Physics; Solar magnetic flux emergence; Solar magnetic fields; 1534; 1476; 2000; 1503

Switchback Boundary Dissipation and Relative Age

We examine Parker Solar Probe (PSP) magnetic field and plasma observations during its first encounter with the Sun in early 2018 November. During this perihelion time, impulsive reversals in the magnetic field, called switchbacks, were found in the data set characterized by a quick rotation in B along with a simultaneous increase in solar wind flow. In this work, we examine the structure and morphology of 920 switchback boundaries as PSP enters and exits the structures, specifically looking for evidence of boundary degra ...

Farrell, W.~M.; Rasca, A.~P.; MacDowall, R.~J.; Gruesbeck, J.~R.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac005b

Parker Data Used; Solar wind; Solar Physics; Solar magnetic flux emergence; Solar magnetic fields; 1534; 1476; 2000; 1503

Switchback Boundary Dissipation and Relative Age

We examine Parker Solar Probe (PSP) magnetic field and plasma observations during its first encounter with the Sun in early 2018 November. During this perihelion time, impulsive reversals in the magnetic field, called switchbacks, were found in the data set characterized by a quick rotation in B along with a simultaneous increase in solar wind flow. In this work, we examine the structure and morphology of 920 switchback boundaries as PSP enters and exits the structures, specifically looking for evidence of boundary degra ...

Farrell, W.~M.; Rasca, A.~P.; MacDowall, R.~J.; Gruesbeck, J.~R.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac005b

Parker Data Used; Solar wind; Solar Physics; Solar magnetic flux emergence; Solar magnetic fields; 1534; 1476; 2000; 1503

Energetic particle evolution during coronal mass ejection passage from 0.3 to 1 AU

We provide analysis of a coronal mass ejection (CME) that passed over Parker Solar Probe (PSP) on January 20, 2020 when the spacecraft was at just 0.32 AU. The Integrated Science Investigation of the Sun instrument suite measures energetic particle populations associated with the CME before, during, and after its passage over the spacecraft. We observe a complex evolution of energetic particles, including a brief \raisebox-0.5ex\textasciitilde2 h period where the energetic particle fluxes are enhanced and the nominal orienta ...

Joyce, C.~J.; McComas, D.~J.; Schwadron, N.~A.; Vourlidas, A.; Christian, E.~R.; McNutt, R.~L.; Cohen, C.~M.~S.; Leske, R.~A.; Mewaldt, R.~A.; Stone, E.~C.; Mitchell, D.~G.; Hill, M.~E.; Roelof, E.~C.; Allen, R.~C.; Szalay, J.~R.; Rankin, J.~S.; Desai, M.~I.; Giacalone, J.; Matthaeus, W.~H.; Niehof, J.~T.; de Wet, W.; Winslow, R.~M.; Bale, S.~D.; Kasper, J.~C.;

Published by: \aap      Published on: jul

YEAR: 2021     DOI: 10.1051/0004-6361/202039933

Parker Data Used; acceleration of particles; Solar wind; magnetic fields

Energetic particle evolution during coronal mass ejection passage from 0.3 to 1 AU

We provide analysis of a coronal mass ejection (CME) that passed over Parker Solar Probe (PSP) on January 20, 2020 when the spacecraft was at just 0.32 AU. The Integrated Science Investigation of the Sun instrument suite measures energetic particle populations associated with the CME before, during, and after its passage over the spacecraft. We observe a complex evolution of energetic particles, including a brief \raisebox-0.5ex\textasciitilde2 h period where the energetic particle fluxes are enhanced and the nominal orienta ...

Joyce, C.~J.; McComas, D.~J.; Schwadron, N.~A.; Vourlidas, A.; Christian, E.~R.; McNutt, R.~L.; Cohen, C.~M.~S.; Leske, R.~A.; Mewaldt, R.~A.; Stone, E.~C.; Mitchell, D.~G.; Hill, M.~E.; Roelof, E.~C.; Allen, R.~C.; Szalay, J.~R.; Rankin, J.~S.; Desai, M.~I.; Giacalone, J.; Matthaeus, W.~H.; Niehof, J.~T.; de Wet, W.; Winslow, R.~M.; Bale, S.~D.; Kasper, J.~C.;

Published by: \aap      Published on: jul

YEAR: 2021     DOI: 10.1051/0004-6361/202039933

Parker Data Used; acceleration of particles; Solar wind; magnetic fields



  1      2      3      4      5      6