PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 108 entries in the Bibliography.


Showing entries from 101 through 108


2014

DYNAMICS OF DOUBLE LAYERS, ION ACCELERATION, AND HEAT FLUX SUPPRESSION DURING SOLAR FLARES

Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger ...

Li, T.; Drake, J.; Swisdak, M.;

Published by: The Astrophysical Journal      Published on: 09/2014

YEAR: 2014     DOI: 10.1088/0004-637X/793/1/7

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: flares

DYNAMICS OF DOUBLE LAYERS, ION ACCELERATION, AND HEAT FLUX SUPPRESSION DURING SOLAR FLARES

Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger ...

Li, T.; Drake, J.; Swisdak, M.;

Published by: The Astrophysical Journal      Published on: 09/2014

YEAR: 2014     DOI: 10.1088/0004-637X/793/1/7

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: flares

Cross-comparison of spacecraft-environment interaction model predictions applied to Solar Probe Plus near perihelion

Five spacecraft-plasma models are used to simulate the interaction of a simplified geometry Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. By considering similarities and differences between results obtained with different numerical approaches under well defined conditions, the consistency and validity of our models can be assessed. The impact on model predictions of physical effects of importance in the SPP mission is also considered by comparing re ...

Marchand, R.; Miyake, Y.; Usui, H.; Deca, J.; Lapenta, G.; elez, J.; Ergun, R.; Sturner, A.; enot, V.; Hilgers, A.; Markidis, S.;

Published by: Physics of Plasmas      Published on: 06/2014

YEAR: 2014     DOI: 10.1063/1.4882439

Parker Data Used; parker solar probe; Solar Probe Plus

Application of aerogravity assist with active cooling and thermal propulsion to the solar probe mission

Aerogravity assist is an orbital transfer technique that enhances the effect of gravity assist maneuvers by utilizing aerodynamic lift in addition to gravity. This enables greater turning angles from a planetary assist, potentially cutting years off a conventional gravity assisted trajectory with multiple flybys or significantly reducing required launch C3. One of the major challenges are the extreme heat loads and heat fluxes present when flying through atmospheres at interplanetary speeds. Incorporating an activ ...

Murakami, David;

Published by: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014      Published on:

YEAR: 2014     DOI:

Aerodynamics; Automobile cooling systems; Cooling; Interplanetary flight; Orbital transfer; Orbits; Probes; Parker Engineering

2013

Squeezing of Particle Distributions by Expanding Magnetic Turbulence and Space Weather Variability

Ruffolo, D.; Seripienlert, A.; Tooprakai, P.; Chuychai, P.; Matthaeus, W.~H.;

Published by: \apj      Published on: 12/2013

YEAR: 2013     DOI: 10.1088/0004-637X/779/1/74

Parker Data Used; galaxies: jets; ISM: jets and outflows; magnetic fields; solar-terrestrial relations; Solar wind; turbulence

von K\ arm\ an Energy Decay and Heating of Protons and Electrons in a Kinetic Turbulent Plasma

Wu, P.; Wan, M.; Matthaeus, W.~H.; Shay, M.~A.; Swisdak, M.;

Published by: \prl      Published on: 09/2013

YEAR: 2013     DOI: 10.1103/PhysRevLett.111.121105

Parker Data Used; 95.30.Qd; 94.05.Lk; 96.50.Ci; Magnetohydrodynamics and plasmas; turbulence; Solar wind plasma; sources of solar wind; Physics - Plasma Physics; Physics - Space Physics

Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas

Karimabadi, H.; Roytershteyn, V.; Wan, M.; Matthaeus, W.~H.; Daughton, W.; Wu, P.; Shay, M.; Loring, B.; Borovsky, J.; Leonardis, E.; Chapman, S.~C.; Nakamura, T.~K.~M.;

Published by: Physics of Plasmas      Published on: 01/2013

YEAR: 2013     DOI: 10.1063/1.4773205

Parker Data Used; astrophysical plasma; plasma Alfven waves; plasma kinetic theory; plasma simulation; plasma temperature; plasma transport processes; plasma turbulence; Solar wind; 52.35.Ra; 94.05.Lk; 94.05.Pt; 52.25.Dg; 52.25.Fi; 52.35.Bj; plasma turbulence; turbulence; Wave/wave wave/particle interactions; Plasma kinetic equations; Transport properties; Magnetohydrodynamic waves

2010

Spacecraft charging and ion wake formation in the near-Sun environment

A three-dimensional, self-consistent code is employed to solve for the static potential structure surrounding a spacecraft in a high photoelectron environment. The numerical solutions show that, under certain conditions, a spacecraft can take on a negative potential in spite of strong photoelectron currents. The negative potential is due to an electrostatic barrier near the surface of the spacecraft that can reflect a large fraction of the photoelectron flux back to the spacecraft. This electrostatic barrier forms if (1) ...

Ergun, R.; Malaspina, D.; Bale, S.; McFadden, J.; Larson, D.; Mozer, F.; Meyer-Vernet, N.; Maksimovic, M.; Kellogg, P.; Wygant, J.;

Published by: Physics of Plasmas      Published on: 07/2010

YEAR: 2010     DOI: 10.1063/1.3457484

52.25.-b; 52.30.-q; 94.05.Jq; parker solar probe; plasma density; plasma flow; Solar Probe Plus; space vehicles; spacecraft charging; Spacecraft sheaths wakes and charging; static electrification



  1      2      3