PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 131 entries in the Bibliography.


Showing entries from 101 through 131


2020

Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma

Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks, and the dependence of the Poynting flux amplitude on the switchback radial location and rotation angle ...

Mozer, F.; Agapitov, O.; Bale, S.; Bonnell, J.; Case, T.; Chaston, C.; Curtis, D.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Krasnoselskikh, V.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; Wygant, J.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab7196

Parker Data Used; parker solar probe; Solar Probe Plus

Turbulence Transport Modeling and First Orbit Parker Solar Probe ( PSP ) Observations

The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding cor ...

Adhikari, L.; Zank, G.; Zhao, L.-L.; Kasper, J.; Korreck, K.; Stevens, M.; Case, A.; Whittlesey, P.; Larson, D.; Livi, R.; Klein, K.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5852

Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First Parker Solar Probe Observations

We present a technique for deriving the temperature anisotropy of solar wind protons observed by the Parker Solar Probe (PSP) mission in the near-Sun solar wind. The radial proton temperature measured by the Solar Wind Electrons, Alphas, and Protons (SWEAP) Solar Probe Cup is compared with the orientation of local magnetic field measured by the FIELDS fluxgate magnetometer, and the proton temperatures parallel and perpendicular to the magnetic field are extracted. This procedure is applied to different data products, and the ...

Huang, Jia; Kasper, J.; Vech, D.; Klein, K.; Stevens, M.; Martinovic, Mihailo; Alterman, B.; Durovcova, Tereza; Paulson, Kristoff; Maruca, Bennett; Qudsi, Ramiz; Case, A.; Korreck, K.; Jian, Lan; Velli, Marco; Lavraud, B.; Hegedus, A.; Bert, C.; Holmes, J.; Bale, Stuart; Larson, Davin; Livi, Roberto; Whittlesey, P.; Pulupa, Marc; MacDowall, Robert; Malaspina, David; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry;

Published by: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab74e0

Parker Data Used

Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters

Small-scale magnetic flux ropes (SFRs) are a type of structure in the solar wind that possess helical magnetic field lines. In a recent report we presented the radial variations of the properties of SFRs from 0.29 to 8 au using in situ measurements from the Helios, Advanced Composition Explorer/WIND (ACE/Wind), Ulysses, and Voyager spacecrafts. With the launch of the Parker Solar Probe (PSP), we extend our previous investigation further into the inner heliosphere. We apply a Grad–Shafranov-based algorithm to identify SFRs ...

Chen, Yu; Hu, Qiang; Zhao, Lingling; Kasper, Justin; Bale, Stuart; Korreck, Kelly; Case, Anthony; Stevens, Michael; Bonnell, John; Goetz, Keith; Harvey, Peter; Klein, Kristopher; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Whittlesey, Phyllis;

Published by: The Astrophysical Journal      Published on:

YEAR: 2020     DOI: 10.3847/1538-4357/abb820

Solar wind; interplanetary turbulence; Magnetohydrodynamics; Astronomy data analysis; Astronomy databases; Parker Data Used

2019

Alfv\ enic velocity spikes and rotational flows in the near-Sun solar wind

Kasper, J.~C.; Bale, S.~D.; Belcher, J.~W.; Berthomier, M.; Case, A.~W.; Chandran, B.~D.~G.; Curtis, D.~W.; Gallagher, D.; Gary, S.~P.; Golub, L.; Halekas, J.~S.; Ho, G.~C.; Horbury, T.~S.; Hu, Q.; Huang, J.; Klein, K.~G.; Korreck, K.~E.; Larson, D.~E.; Livi, R.; Maruca, B.; Lavraud, B.; Louarn, P.; Maksimovic, M.; Martinovic, M.; McGinnis, D.; Pogorelov, N.~V.; Richardson, J.~D.; Skoug, R.~M.; Steinberg, J.~T.; Stevens, M.~L.; Szabo, A.; Velli, M.; Whittlesey, P.~L.; Wright, K.~H.; Zank, G.~P.; MacDowall, R.~J.; McComas, D.~J.; McNutt, R.~L.; Pulupa, M.; Raouafi, N.~E.; Schwadron, N.~A.;

Published by: \nat      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/s41586-019-1813-z

Parker Data Used

Electron Energy Partition across Interplanetary Shocks. II. Statistics

A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within \textpm2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low-energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future w ...

Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine;

Published by: The Astrophysical Journal Supplement Series      Published on: 12/2019

YEAR: 2019     DOI: 10.3847/1538-4365/ab5445

Astrophysics - Solar and Stellar Astrophysics; Interplanetary particle acceleration; Interplanetary shocks; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Plasma physics; Solar coronal mass ejection shocks; Solar coronal mass ejections; Solar Probe Plus; Solar wind; Space plasmas

Highly structured slow solar wind emerging from an equatorial coronal hole

During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfv\ enic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of ...

Bale, S.; Badman, S.; Bonnell, J.; Bowen, T.; Burgess, D.; Case, A.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Drake, J.; de Wit, Dudok; Eastwood, J.; Ergun, R.; Farrell, W.; Fong, C.; Goetz, K.; Goldstein, M.; Goodrich, K.; Harvey, P.; Horbury, T.; Howes, G.; Kasper, J.; Kellogg, P.; Klimchuk, J.; Korreck, K.; Krasnoselskikh, V.; Krucker, S.; Laker, R.; Larson, D.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Martinez-Oliveros, J.; McComas, D.; Meyer-Vernet, N.; Moncuquet, M.; Mozer, F.; Phan, T.; Pulupa, M.; Raouafi, N.; Salem, C.; Stansby, D.; Stevens, M.; Szabo, A.; Velli, M.; Woolley, T.; Wygant, J.;

Published by: Nature      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/s41586-019-1818-7

Parker Data Used; parker solar probe; Solar Probe Plus

Probing the energetic particle environment near the Sun

NASA\textquoterights Parker Solar Probe mission recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: "impulsive" events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in ...

McComas, D.; Christian, E.; Cohen, C.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Krimigis, S.; Labrador, A.; Leske, R.; Malandraki, O.; Matthaeus, W.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Posner, A.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Bale, S.; Kasper, J.; Case, A.; Korreck, K.; MacDowall, R.; Pulupa, M.; Stevens, M.; Rouillard, A.;

Published by: Nature      Published on: 12/2019

YEAR: 2019     DOI: 10.1038/s41586-019-1811-1

Parker Data Used; parker solar probe; Solar Probe Plus

Correcting Parker Solar Probe Electron Measurements for Spacecraft Magnetic and Electric Fields

The spacecraft body of the Parker Solar Probe may interfere with electron measurements in two ways. The first is the presence of several permanent magnets near the Solar Probe Analyzers (SPAN) instruments. The second is the widely varying spacecraft potential. We estimate the effect of these interferences by performing particle tracing simulations on electrons of various energies using a simplified model of the spacecraft potential and measurements of the magnetic fields. From this we can (1) estimate the individual and comb ...

McGinnis, Daniel; Halekas, Jasper; Whittlesey, Phyllis; Larson, Davin; Kasper, Justin;

Published by: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026823

Parker Data Used

Electron Energy Partition across Interplanetary Shocks. I. Methodology and Data Product

Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine;

Published by: \apjs      Published on: 07/2019

YEAR: 2019     DOI: 10.3847/1538-4365/ab22bd

Parker Data Used; methods: numerical; methods: statistical; plasmas; shock waves; Solar wind; Sun: coronal mass ejections: CMEs; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Strong Preferential Ion Heating is Limited to within the Solar Alfven Surface

The decay of the solar wind helium-to-hydrogen temperature ratio due to Coulomb thermalization can be used to measure how far from the Sun strong preferential ion heating occurs. Previous work has shown that a zone of preferential ion heating, resulting in mass-proportional temperatures, extends about 20-40 R-circle dot from the Sun on average. Here we look at the motion of the outer boundary of this zone with time and compare it to other physically meaningful distances. We report that the boundary moves in lockstep with the ...

Kasper, Justin; Klein, Kristopher;

Published by: ASTROPHYSICAL JOURNAL LETTERS      Published on: 06/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab1de5

Parker Data Used

Predictions for the First Parker Solar Probe Encounter

We examine Alfven Wave Solar atmosphere Model (AWSoM) predictions of the first Parker Solar Probe (PSP) encounter. We focus on the 12 day closest approach centered on the first perihelion. AWSoM allows us to interpret the PSP data in the context of coronal heating via Alfven wave turbulence. The coronal heating and acceleration is addressed via outward-propagating low-frequency Alfven waves that are partially reflected by Alfven speed gradients. The nonlinear interaction of these counter-propagating waves results in a turbul ...

van der Holst, B.; Manchester, W.; Klein, K.; Kasper, J.;

Published by: ASTROPHYSICAL JOURNAL LETTERS      Published on: 02/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab04a5

Parker Data Used

2017

A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun

The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relax ...

Kasper, J.; Klein, K.; Weber, T.; Maksimovic, M.; Zaslavsky, A.; Bale, S.; Maruca, B.; Stevens, M.; Case, A.;

Published by: The Astrophysical Journal      Published on: 11/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa84b1

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence

2016

The FIELDS Instrument Suite for Solar Probe Plus

NASA\textquoterights Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument conce ...

Bale, S.; Goetz, K.; Harvey, P.; Turin, P.; Bonnell, J.; de Wit, T.; Ergun, R.; MacDowall, R.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.; Burgess, D.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Choi, M.; Connerney, J.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.; Farrell, W.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.; Hayes, L.; Hinze, J.; Hollweg, J.; Horbury, T.; Howard, R.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.; Kellogg, P.; Kien, M.; Klimchuk, J.; Krasnoselskikh, V.; Krucker, S.; Lynch, J.; Maksimovic, M.; Malaspina, D.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.; Mozer, F.; Murphy, S.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.; Salem, C.; Seitz, D.; Sheppard, D.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.;

Published by: Space Science Reviews      Published on: 12/2016

YEAR: 2016     DOI: 10.1007/s11214-016-0244-5

Coronal heating; Parker Data Used; parker solar probe; Solar Probe Plus

The Solar Probe Plus Mission: Humanity\textquoterights First Visit to Our Star

Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP\textquoterights main science goal is to determine the structure and dynamics of the Sun\textquoterights coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of su ...

Fox, N.; Velli, M.; Bale, S.; Decker, R.; Driesman, A.; Howard, R.; Kasper, J.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M.; McComas, D.; Raouafi, N.; Szabo, A.;

Published by: Space Science Reviews      Published on: 12/2016

YEAR: 2016     DOI: 10.1007/s11214-015-0211-6

Corona; Heliophysics; NASA mission; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; SPP

Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions

We analyze the heavy ion components (A \>4 amu ) in collisionally young solar wind plasma and show that there is a clear, stable dependence of temperature on mass, probably reflecting the conditions in the solar corona. We consider both linear and power law forms for the dependence and find that a simple linear fit of the form Ti/Tp=(1.35 \textpm.02 )mi/mp describes the observations twice as well as the equivalent best fit power law of the form Ti/Tp=(m< ...

Tracy, Patrick; Kasper, Justin; Raines, Jim; Shearer, Paul; Gilbert, Jason; Zurbuchen, Thomas;

Published by: Physical Review Letters      Published on: 06/2016

YEAR: 2016     DOI: 10.1103/PhysRevLett.116.255101

parker solar probe; Solar Probe Plus

Modification of Velocity Power Spectra by Thermal Plasma Instrumentation

The upcoming Solar Probe Plus mission (Launch 2018) will launch with the newest and fastest space plasma instrumentation to date. The Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, which measures thermal plasma, will make measurements faster than the local gyro-frequency and proton plasma frequency. By developing an end-to-end computer model of a SWEAP instrument, this work explores the specific instrumental effects of thermal space plasma measurement, particularly in the reproduction of velocity power s ...

Whittlesey, P.; Zank, G.; Cirtain, J.; Wright, K.; Case, A.; Kasper, J.;

Published by:       Published on:

YEAR: 2016     DOI: 10.1088/1742-6596/767/1/012026

Parker Data Used

2015

Efficiency and behavior of textured high emissivity metallic coatings at high temperature

Three metallic coatings with textured surfaces, made of rhenium, tungsten and molybdenum, were studied in the frame of the Solar Probe Plus mission (NASA) as candidate materials. The role of these coatings is to dissipate a maximum of energy from a hot instrument facing the Sun, by the mean of their high total hemispherical emissivity. The total hemispherical emissivity of the three coatings was measured in the temperature range 1100-1900 K, as well as over time in order to study their high temperature stability. Various emi ...

Brodu, E.; Balat-Pichelin, M.; Sans, J.; Freeman, M.; Kasper, J.;

Published by: MATERIALS \& DESIGN      Published on: 10/2015

YEAR: 2015     DOI: 10.1016/j.matdes.2015.05.073

Parker Data Used

Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP

Evolution of the emissivity of tungsten at high temperature with and without proton bombardment

The Solar Probe Plus mission (NASA) will be the first mission to enter the solar corona. The spacecraft will orbit the Sun at 8.5 solar radii from the Sun s surface at closest approach. Some metallic parts of the two on-board instruments, SWEAP (a Faraday cup) and FIELDS (antennas), will directly face the Sun, while the rest of the payload will be protected by a heat shield. For application to these instruments, a candidate refractory material, tungsten, was studied, confronting conditions similar to the ones expected close ...

Brodu, E.; Balat-Pichelin, M.; Sans, J.; Kasper, J.;

Published by: ACTA MATERIALIA      Published on: 02/2015

YEAR: 2015     DOI: 10.1016/j.actamat.2014.10.050

Parker Data Used

2014

Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation

The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun\textquoterights surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1)\ O ...

McComas, D.; Alexander, N.; Angold, N.; Bale, S.; Beebe, C.; Birdwell, B.; Boyle, M.; Burgum, J.; Burnham, J.; Christian, E.; Cook, W.; Cooper, S.; Cummings, A.; Davis, A.; Desai, M.; Dickinson, J.; Dirks, G.; Do, D.; Fox, N.; Giacalone, J.; Gold, R.; Gurnee, R.; Hayes, J.; Hill, M.; Kasper, J.; Kecman, B.; Klemic, J.; Krimigis, S.; Labrador, A.; Layman, R.; Leske, R.; Livi, S.; Matthaeus, W.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Nelson, K.; Parker, C.; Rankin, J.; Roelof, E.; Schwadron, N.; Seifert, H.; Shuman, S.; Stokes, M.; Stone, E.; Vandegriff, J.; Velli, M.; von Rosenvinge, T.; Weidner, S.; Wiedenbeck, M.; Wilson, P.;

Published by: Space Science Reviews      Published on: 07/2014

YEAR: 2014     DOI: 10.1007/s11214-014-0059-1

CMEs; Corona; ISIS; Parker Data Used; Particle acceleration; SEPs; Solar energetic particles; Solar Probe Plus

Coronal electron temperature in the protracted solar minimum, the cycle 24 mini maximum, and over centuries

Schwadron, N.~A.; Goelzer, M.~L.; Smith, C.~W.; Kasper, J.~C.; Korreck, K.; Leamon, R.~J.; Lepri, S.~T.; Maruca, B.~A.; McComas, D.; Steven, M.~L.;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019397

Parker Data Used; Solar wind

SPIE ProceedingsSolar Wind Electrons Alphas and Protons (SWEAP) Science Operations Center initial design and implementation

Solar Probe Plus, scheduled to launch in 2018, is a NASA mission that will fly through the Sun\textquoterights atmosphere for the first time. It will employ a combination of in situ plasma measurements and remote sensing imaging to achieve the mission\textquoterights primary goal: to understand how the Sun\textquoterights corona is heated and how the solar wind is accelerated. The Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite consists of a Faraday cup and three electrostatic analyzers. In order to accom ...

Korreck, Kelly; Kasper, Justin; Case, Anthony; Daigneau, Peter; Bookbinder, Jay; Larson, Davin; Halekas, Jasper; Stevens, Michael; Ludlam, Micheal; Marchant, Will;

Published by:       Published on:

YEAR: 2014     DOI: 10.1117/12.2057314

Parker Data Used

2013

Stochastic Heating, Differential Flow, and the Alpha-to-proton Temperature Ratio in the Solar Wind

Chandran, B.~D.~G.; Verscharen, D.; Quataert, E.; Kasper, J.~C.; Isenberg, P.~A.; Bourouaine, S.;

Published by: \apj      Published on: 10/2013

YEAR: 2013     DOI: 10.1088/0004-637X/776/1/45

Parker Data Used; plasmas; Solar wind; Sun: corona; turbulence; waves; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

AIP Conference ProceedingsDesigning a sun-pointing Faraday cup for solar probe plus

The NASA Solar Probe Plus (SPP) mission will be the first spacecraft to pass through the sub-Alfv\ enic solar corona. The objectives of the mission are to trace the flow of energy that heats and accelerates the solar corona and solar wind, to determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and to explore mechanisms that accelerate and transport energetic particles. The Solar Wind Electrons, Alphas, and Protons (SWEAP) Investigation instrument suite on SPP will measu ...

Case, A.; Kasper, J.; Daigneau, P.; Caldwell, D.; Freeman, M.; Gauron, T.; Maruca, B.; Bookbinder, J.; Korreck, K.; Cirtain, J.; Effinger, M.; Halekas, J.; Larson, D.; Lazarus, A.; Stevens, M.; Taylor, E.; Wright, K.;

Published by:       Published on: 01/2013

YEAR: 2013     DOI: 10.1063/1.4811083

Parker Data Used

The design, development, and implementation of a solar environmental simulator (SES) for the SAO Faraday Cup on Solar Probe Plus

This paper describes the implementation of a solar simulator, know as the Solar Environment Simulator (SES), that can simulate solar flux levels up to those encountered at 9.8 solar radii. The paper outlines the design, and the challenges of realizing the SES. It also describes its initial uses for proving out the design of the Solar Winds Electrons, Alphas, and Protons (SWEAP) Faraday cup. The upcoming Solar Probe Plus (SPP) mission requires that its in-situ plasma instrument (the Faraday Cup) survive and operate over an un ...

Cheimets, Peter; Bookbinder, Jay; Freeman, Mark; Gates, Richard; Gauron, Thomas; Guth, Giora; Kasper, Justin; McCracken, Kenneth; Podgorski, William;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2013     DOI:

Arc lamps; Power control; Probes; Test facilities; Parker Engineering

Technology development for the solar probe plus faraday cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2013     DOI:

plasmas; Solar wind; Parker Engineering

Mechanical design of the solar probe cup instrument on solar probe plus

The Solar Probe Cup (SPC) Instrument is a Sun-facing Faraday Cup instrument slated for launch aboard the Solar Probe Plus (SPP) spacecraft in 2018. SPC is one of two instruments onboard the Solar Wind Electrons Alphas Protons (SWEAP) instrument suite and is the only SPP charged particle instrument that will not be shielded behind the spacecraft s Thermal Protection System (TPS). The 7-year SPP mission will take SPC on 24 solar encounters at perihelia ranging from 35 to 9.86 solar radii (RS). The SPC components will encounter ...

Bergner, H.; Caldwell, D.; Case, A.W.; Daigneau, P.; Freeman, M.; Kasper, J.;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2013     DOI:

Charged particles; Heat shielding; Parker Engineering

Mechanical Design of the Solar Probe Cup instrument on Solar Probe Plus

The Solar Probe Cup (SPC) Instrument is a Sun-facing Faraday Cup instrument slated for launch aboard the Solar Probe Plus (SPP) spacecraft in 2018. SPC is one of two instruments onboard the Solar Wind Electrons Alphas Protons (SWEAP) instrument suite and is the only SPP charged particle instrument that will not be shielded behind the spacecraft s Thermal Protection System (TPS). The 7-year SPP mission will take SPC on 24 solar encounters at perihelia ranging from 35 to 9.86 solar radii (R-S). The SPC components will encounte ...

Bergner, H.; Caldwell, D.; Case, A.; Daigneau, P.; Freeman, M.; Kasper, J.;

Published by:       Published on:

YEAR: 2013     DOI: 10.1117/12.2022761

Parker Data Used

The design, development, and implementation of a solar environmental simulator (SES) for the SAO Faraday Cup on Solar Probe Plus

This paper describes the implementation of a solar simulator, know as the Solar Environment Simulator (SES), that can simulate solar flux levels up to those encountered at 9.8 solar radii. The paper outlines the design, and the challenges of realizing the SES. It also describes its initial uses for proving out the design of the Solar Winds Electrons, Alphas, and Protons (SWEAP) Faraday cup. The upcoming Solar Probe Plus (SPP) mission requires that its in-situ plasma instrument (the Faraday Cup) survive and operate over an un ...

Cheimets, Peter; Bookbinder, Jay; Freeman, Mark; Gates, Richard; Gauron, Thomas; Guth, Giora; Kasper, Justin; McCracken, Kenneth; Podgorski, William;

Published by:       Published on:

YEAR: 2013     DOI: 10.1117/12.2024051

Parker Data Used

Technology development for the Solar Probe Plus Faraday Cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by:       Published on:

YEAR: 2013     DOI: 10.1117/12.2024983

Parker Data Used



  1      2      3