Notice:
|
Found 142 entries in the Bibliography.
Showing entries from 101 through 142
2019 |
Tomography of the Solar Corona with the Wide-Field Imager for the Parker Solar Probe The Wide-field Imager for the Parker Solar Probe (PSP/WISPR) comprises two telescopes that record white-light total brightness [B] images of the solar corona. Their fields of view cover a widely changing range of heliocentric heights over the 24 highly eccentric orbits planned for the mission. In this work, the capability of PSP/WISPR data to carry out tomographic reconstructions of the three-dimensional (3D) distribution of the coronal electron density is investigated. Based on the precise orbital information of the mission ... Vasquez, Alberto; Frazin, Richard; Vourlidas, Angelos; Manchester, Ward; van der Holst, Bart; Howard, Russell; Lamy, Philippe; Published by: SOLAR PHYSICS Published on: 06/2019 YEAR: 2019   DOI: 10.1007/s11207-019-1471-1 |
Predictions for the First Parker Solar Probe Encounter We examine Alfven Wave Solar atmosphere Model (AWSoM) predictions of the first Parker Solar Probe (PSP) encounter. We focus on the 12 day closest approach centered on the first perihelion. AWSoM allows us to interpret the PSP data in the context of coronal heating via Alfven wave turbulence. The coronal heating and acceleration is addressed via outward-propagating low-frequency Alfven waves that are partially reflected by Alfven speed gradients. The nonlinear interaction of these counter-propagating waves results in a turbul ... van der Holst, B.; Manchester, W.; Klein, K.; Kasper, J.; Published by: ASTROPHYSICAL JOURNAL LETTERS Published on: 02/2019 YEAR: 2019   DOI: 10.3847/2041-8213/ab04a5 |
The Fluid-like and Kinetic Behavior of Kinetic Alfv\ en Turbulence in Space Plasma Kinetic Alfv\ en waves (KAWs) are the short-wavelength extension of the magnetohydrodynamics Alfv\ en-wave branch in the case of highly oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, a collisional two-fluid theory and a collisionless linear kinetic theory, to obtain predictions for the KAW polarizations depending on\ β\ p\ (the ratio of the proton th ... Wu, Honghong; Verscharen, Daniel; Wicks, Robert; Chen, Christopher; He, Jiansen; Nicolaou, Georgios; Published by: The Astrophysical Journal Published on: 01/2019 YEAR: 2019   DOI: 10.3847/1538-4357/aaef77 magnetohydrodynamics: MHD; plasmas; solar-terrestrial relations; turbulence; waves; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Full inversion of solar relativistic electron events measured by the Helios spacecraft Context. The Parker Solar Probe and the incoming Solar Orbiter mission will provide measurements of solar energetic particle (SEP) events at close heliocentric distances from the Sun. Up to present, the largest data set of SEP events in the inner heliosphere are the observations by the two Helios spacecraft. Aims. We re-visit a sample of 15 solar relativistic electron events measured by the Helios mission with the goal of better characterising the injection histories of solar energetic particles a ... Pacheco, D.; Agueda, N.; Aran, A.; Heber, B.; Lario, D.; Published by: Astronomy \& Astrophysics Published on: 01/2019 YEAR: 2019   DOI: 10.1051/0004-6361/201834520 flares; Interplanetary medium; Heliosphere; particle emission |
2018 |
Chhiber, R.; Chasapis, A.; Bandyopadhyay, R.; Parashar, T.~N.; Matthaeus, W.~H.; Maruca, B.~A.; Moore, T.~E.; Burch, J.~L.; Torbert, R.~B.; Russell, C.~T.; Le Contel, O.; Argall, M.~R.; Fischer, D.; Mirioni, L.; Strangeway, R.~J.; Pollock, C.~J.; Giles, B.~L.; Gershman, D.~J.; Published by: Journal of Geophysical Research (Space Physics) Published on: 12/2018 YEAR: 2018   DOI: 10.1029/2018JA025768 Parker Data Used; Solar wind; magnetosheath; turbulence; plasma turbulence; intermittency; multispacecraft technique |
Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altit ... Jeffrey, Natasha; Hahn, Michael; Savin, Daniel; Fletcher, Lyndsay; Published by: The Astrophysical Journal Published on: 03/2018 YEAR: 2018   DOI: 10.3847/2041-8213/aab08c Astrophysics - Solar and Stellar Astrophysics; line: profiles; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; Sun: UV radiation; techniques: spectroscopic |
Published by: Published on: 01/2018 |
2017 |
Recent observations have shown that coronal shocks driven by coronal mass ejections can develop and accelerate particles within several solar radii in large solar energetic particle (SEP) events. Motivated by this, we present an SEP acceleration study that including the process in which a fast shock propagates through a streamer-like magnetic field with both closed and open field lines in the low corona region. The acceleration of protons is modeled by numerically solving the Parker transport equation with spatial diffusi ... Kong, Xiangliang; Guo, Fan; Giacalone, Joe; Li, Hui; Chen, Yao; Published by: The Astrophysical Journal Published on: 12/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa97d7 acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics; shock waves; Solar Probe Plus; Sun: corona; Sun: coronal mass ejections: CMEs; Sun: magnetic fields; Sun: particle emission |
Energy transfer, pressure tensor, and heating of kinetic plasma Yang, Yan; Matthaeus, William; Parashar, Tulasi; Haggerty, Colby; Roytershteyn, Vadim; Daughton, William; Wan, Minping; Shi, Yipeng; Chen, Shiyi; Published by: Physics of Plasmas Published on: 07/2017 YEAR: 2017   DOI: 10.1063/1.4990421 Parker Data Used; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Energy transfer channels and turbulence cascade in Vlasov-Maxwell turbulence Yang, Yan; Matthaeus, W.~H.; Parashar, T.~N.; Wu, P.; Wan, M.; Shi, Y.; Chen, S.; Roytershteyn, V.; Daughton, W.; Published by: \pre Published on: 06/2017 YEAR: 2017   DOI: 10.1103/PhysRevE.95.061201 |
The Mushroom: A half-sky energetic ion and electron detector We present a time-of-flight mass spectrometer design for the measurement of ions in the 30 keV to 10 MeV range for protons (up to 40 MeV and 150 MeV for He and heavy ions, respectively) and 30 keV to 1 MeV range for electrons, covering half of the sky with 80 apertures. The instrument, known as the "Mushroom," owing to its shape, solves the field of view problem for magnetospheric and heliospheric missions that employ three-axis stabilized spacecraft, yet still require extended angular coverage; the Mushroom is also compa ... Hill, M.; Mitchell, D.; Andrews, G.; Cooper, S.; Gurnee, R.; Hayes, J.; Layman, R.; McNutt, R.; Nelson, K.; Parker, C.; Schlemm, C.; Stokes, M.; Begley, S.; Boyle, M.; Burgum, J.; Do, D.; Dupont, A.; Gold, R.; Haggerty, D.; Hoffer, E.; Hutcheson, J.; Jaskulek, S.; Krimigis, S.; Liang, S.; London, S.; Noble, M.; Roelof, E.; Seifert, H.; Strohbehn, K.; Vandegriff, J.; Westlake, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2016JA022614 2 pi steradian; anisotropy; mass composition; microchannel plate; parker solar probe; Solar Probe Plus; solid-state detector; time of flight |
The Mushroom: A half-sky energetic ion and electron detector We present a time-of-flight mass spectrometer design for the measurement of ions in the 30 keV to 10 MeV range for protons (up to 40 MeV and 150 MeV for He and heavy ions, respectively) and 30 keV to 1 MeV range for electrons, covering half of the sky with 80 apertures. The instrument, known as the "Mushroom," owing to its shape, solves the field of view problem for magnetospheric and heliospheric missions that employ three-axis stabilized spacecraft, yet still require extended angular coverage; the Mushroom is also compa ... Hill, M.; Mitchell, D.; Andrews, G.; Cooper, S.; Gurnee, R.; Hayes, J.; Layman, R.; McNutt, R.; Nelson, K.; Parker, C.; Schlemm, C.; Stokes, M.; Begley, S.; Boyle, M.; Burgum, J.; Do, D.; Dupont, A.; Gold, R.; Haggerty, D.; Hoffer, E.; Hutcheson, J.; Jaskulek, S.; Krimigis, S.; Liang, S.; London, S.; Noble, M.; Roelof, E.; Seifert, H.; Strohbehn, K.; Vandegriff, J.; Westlake, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2016JA022614 2 pi steradian; anisotropy; mass composition; microchannel plate; parker solar probe; Solar Probe Plus; solid-state detector; time of flight |
Full wing qualification testing and incremental program update for the solar probe plus array As the Solar Probe Plus (SPP) program moves into the flight hardware build phase, the final testing of the qualification panel has been completed. The rigorous testing is many orders of magnitude more intensive than that used for standard earth-orbit missions. Testing under high irradiance, high temperature conditions over large areas poses design and logistic challenges, which have spurred innovation in steady state illumination. New test hardware of interest include a large area LED simulator capable of 6X AM0 string curre ... Gerger, Andrew; Stall, Richard; Schurman, Matthew; Sharps, Paul; Sulyma, Christopher; De Zetter, Karen; Johnson, Paul; Mitchell, Richard; Guevara, Roland; Crist, Kevin; Cisneros, Larry; Sarver, Charles; Published by: 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017 Published on: Degassing; Heliostats (instruments); Light emitting diodes; Orbits; Probes; Silicones; Solar cell arrays; Wings; Parker Engineering |
Advancements in hardware design for the frontier radio used for the solar probe plus mission The Frontier Radio for the Solar Probe Plus mission offers a host of hardware design and manufacturing improvements. These improvements build on the technology readiness level (TRL)-9 radio platform that was flown on the Van Allen Probes mission in a duplexed S-band configuration and several development tasks funded by NASA Headquarters. Prior RF slice designs consisted of two separate circuit boards: one for lower frequencies and one for high-frequencies; advances in technology enabled the use of a high-frequency multilayer ... Angert, Matthew; Bubnash, Brian; Hearty, Ryan; Neill, Michael; Ling, Sharon; Matlin, Daniel; Cheng, Sheng; Published by: IEEE Aerospace Conference Proceedings Published on: Digital signal processing; Field programmable gate arrays (FPGA); Integrated circuit design; Interplanetary flight; Magnesium alloys; Manufacture; NASA; Probes; Random access storage; Parker Engineering |
Development of a flight qualified ka-band multi-chip module for the solar probe plus mission The Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a flight qualified, hermetically sealed, I/Q modulator Ka-band Multi-chip Module (MCM). Prototypes of this device have been developed over the years, but Solar Probe Plus (SPP) will be the first mission to use a flight qualified version of the MCM. This MCM enables a first for a deep-space mission: primary science data downlink with simultaneous data and navigation over Ka-band. SPP will also be the first JHU/APL mission to use Ka-band for downlink. The ... Matlin, Daniel; Sharma, Avinash; Angert, Matthew; Cheng, Sheng; Lehtonen, John; Published by: IEEE Aerospace Conference Proceedings Published on: Commercial off-the-shelf; Electronic equipment testing; Gallium arsenide; III-V semiconductors; Interplanetary flight; Monolithic microwave integrated circuits; NASA; Probes; Parker Engineering |
2016 |
The FIELDS Instrument Suite for Solar Probe Plus NASA\textquoterights Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument conce ... Bale, S.; Goetz, K.; Harvey, P.; Turin, P.; Bonnell, J.; de Wit, T.; Ergun, R.; MacDowall, R.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.; Burgess, D.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Choi, M.; Connerney, J.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.; Farrell, W.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.; Hayes, L.; Hinze, J.; Hollweg, J.; Horbury, T.; Howard, R.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.; Kellogg, P.; Kien, M.; Klimchuk, J.; Krasnoselskikh, V.; Krucker, S.; Lynch, J.; Maksimovic, M.; Malaspina, D.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.; Mozer, F.; Murphy, S.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.; Salem, C.; Seitz, D.; Sheppard, D.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.; Published by: Space Science Reviews Published on: 12/2016 YEAR: 2016   DOI: 10.1007/s11214-016-0244-5 Coronal heating; Parker Data Used; parker solar probe; Solar Probe Plus |
The FIELDS Instrument Suite for Solar Probe Plus NASA\textquoterights Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument conce ... Bale, S.; Goetz, K.; Harvey, P.; Turin, P.; Bonnell, J.; de Wit, T.; Ergun, R.; MacDowall, R.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.; Burgess, D.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Choi, M.; Connerney, J.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.; Farrell, W.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.; Hayes, L.; Hinze, J.; Hollweg, J.; Horbury, T.; Howard, R.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.; Kellogg, P.; Kien, M.; Klimchuk, J.; Krasnoselskikh, V.; Krucker, S.; Lynch, J.; Maksimovic, M.; Malaspina, D.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.; Mozer, F.; Murphy, S.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.; Salem, C.; Seitz, D.; Sheppard, D.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.; Published by: Space Science Reviews Published on: 12/2016 YEAR: 2016   DOI: 10.1007/s11214-016-0244-5 Coronal heating; Parker Data Used; parker solar probe; Solar Probe Plus |
Emissivity of Boron Nitride and Metals for the Solar Probe Plus Mission For application to the Solar Probe Plus mission (NASA), the behavior and the thermo-optical performance at very high temperatures (range 1100\textendash2200\ K) of candidate passive thermal control materials was assessed. On one hand, a pyrolytic boron nitride coating (130 μm\ 130 μm thick) was proved to be stable at high temperatures up to 2200\ K in vacuum, as well as proved, via total and spectral emissivity measurements at high temperatures, to be able to effectively turn an initially ...
Brodu, E.; Balat-Pichelin, M.; Published by: Journal of Spacecraft and Rockets Published on: 11/2016 YEAR: 2016   DOI: 10.2514/1.A33453 |
Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions We analyze the heavy ion components (A \>4 amu ) in collisionally young solar wind plasma and show that there is a clear, stable dependence of temperature on mass, probably reflecting the conditions in the solar corona. We consider both linear and power law forms for the dependence and find that a simple linear fit of the form Ti/Tp=(1.35 \textpm.02 )mi/mp describes the observations twice as well as the equivalent best fit power law of the form Ti/Tp=(m< ... Tracy, Patrick; Kasper, Justin; Raines, Jim; Shearer, Paul; Gilbert, Jason; Zurbuchen, Thomas; Published by: Physical Review Letters Published on: 06/2016 YEAR: 2016   DOI: 10.1103/PhysRevLett.116.255101 |
Full wing qualification testing and incremental program update for the solar probe plus array As the Solar Probe Plus (SPP) program moves into the flight hardware build phase, the final testing of the qualification panel has been completed. The rigorous testing is many orders of magnitude more intensive than that used for standard earth-orbit missions. Testing under high irradiance, high temperature conditions over large areas poses design and logistic challenges, which have spurred innovation in steady state illumination. New test hardware of interest include a large area LED simulator capable of 6X AM0 string curre ... Gerger, Andrew; Stall, Richard; Schurman, Matthew; Sharps, Paul; Sulyma, Christopher; De Zetter, Karen; Johnson, Paul; Mitchell, Richard; Guevara, Roland; Crist, Kevin; Cisneros, Larry; Sarver, Charles; Published by: Conference Record of the IEEE Photovoltaic Specialists Conference Published on: Degassing; Heliostats (instruments); Light emitting diodes; Orbits; Probes; Silicones; Solar cell arrays; Wings; Parker Engineering |
The Solar Probe Plus Ground Based Network Executive Summary. The role of the Solar Probe Plus (SPP) Ground-Based Network\ (SPP-GBN) is to optimize and enhance the science return of the SPP mission by\ providing unique data from the ground. The role of the GBN extends to planning and\ coordination, supported by appropriate infrastructure, to ensure that the right kinds of\ observations are acquired by the various facilities (see below), at the right times, and that\ the data are readily accessible to the community for a variety of uses. Th ... Schwadron, N.; Bastian, T.; Leibacher, J.; Gary, D.; Pevtsov, A.; Velli, M.; Burkpile, J.; Raouafi, N.; Deforest, C.; Published by: Published on: |
2015 |
Efficiency and behavior of textured high emissivity metallic coatings at high temperature Three metallic coatings with textured surfaces, made of rhenium, tungsten and molybdenum, were studied in the frame of the Solar Probe Plus mission (NASA) as candidate materials. The role of these coatings is to dissipate a maximum of energy from a hot instrument facing the Sun, by the mean of their high total hemispherical emissivity. The total hemispherical emissivity of the three coatings was measured in the temperature range 1100-1900 K, as well as over time in order to study their high temperature stability. Various emi ... Brodu, E.; Balat-Pichelin, M.; Sans, J.; Freeman, M.; Kasper, J.; Published by: MATERIALS \& DESIGN Published on: 10/2015 YEAR: 2015   DOI: 10.1016/j.matdes.2015.05.073 |
The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ... Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary; Published by: Space Science Reviews Published on: 10/2015 YEAR: 2015   DOI: 10.1007/s11214-015-0206-3 Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP |
The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ... Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary; Published by: Space Science Reviews Published on: 10/2015 YEAR: 2015   DOI: 10.1007/s11214-015-0206-3 Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP |
The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ... Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary; Published by: Space Science Reviews Published on: 10/2015 YEAR: 2015   DOI: 10.1007/s11214-015-0206-3 Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP |
Intermittency and Alignment in Strong RMHD Turbulence Chandran, B.~D.~G.; Schekochihin, A.~A.; Mallet, A.; Published by: \apj Published on: 07/2015 YEAR: 2015   DOI: 10.1088/0004-637X/807/1/39 Parker Data Used; magnetohydrodynamics: MHD; plasmas; Solar wind; Sun: chromosphere; Sun: corona; turbulence; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
RADIAL EVOLUTION OF A MAGNETIC CLOUD: MESSENGER , STEREO , AND VENUS EXPRESS OBSERVATIONS The Solar Orbiter and Solar Probe Plus missions will provide observations of magnetic clouds closer to the Sun than ever before, and it will be good preparation for these missions to make full use of the most recent in situ data sets from the inner heliosphere\textemdashnamely, those provided by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express\textemdashfor magnetic cloud studies. We present observations of the same magnetic cloud made by MESSENGER at Mercury and later by Solar T ... Good, S.; Forsyth, R.; Raines, J.; Gershman, D.; Slavin, J.; Zurbuchen, T.; Published by: The Astrophysical Journal Published on: 07/2015 YEAR: 2015   DOI: 10.1088/0004-637X/807/2/177 magnetic fields; parker solar probe; Solar Probe Plus; Solar wind; Sun: coronal mass ejections: CMEs; Sun: heliosphere |
Localized enhancements of energetic particles at oblique collisionless shocks Fraschetti, F.; Giacalone, J.; Published by: \mnras Published on: 04/2015 YEAR: 2015   DOI: 10.1093/mnras/stv247 Parker Data Used; turbulence; cosmic rays; ISM: magnetic fields; Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Evolution of the emissivity of tungsten at high temperature with and without proton bombardment The Solar Probe Plus mission (NASA) will be the first mission to enter the solar corona. The spacecraft will orbit the Sun at 8.5 solar radii from the Sun s surface at closest approach. Some metallic parts of the two on-board instruments, SWEAP (a Faraday cup) and FIELDS (antennas), will directly face the Sun, while the rest of the payload will be protected by a heat shield. For application to these instruments, a candidate refractory material, tungsten, was studied, confronting conditions similar to the ones expected close ... Brodu, E.; Balat-Pichelin, M.; Sans, J.; Kasper, J.; Published by: ACTA MATERIALIA Published on: 02/2015 YEAR: 2015   DOI: 10.1016/j.actamat.2014.10.050 |
2014 |
In the frame of future exploration missions such as Solar Probe Plus (NASA) and PHOIBOS (ESA), research was carried out to study pyrolytic BN material envisaged as coating for their heat shields. The physico-chemical behavior of CVD pBN at very high temperature with or without hydrogen ions and VUV (Vacuum Ultra-Violet) irradiations was studied in high vacuum together with the in situ measurement of the thermal radiative properties conditioning the thermal equilibrium of the heat shield. Experimental results obtained on m ... Balat-Pichelin, M.; Eck, J.; Heurtault, S.; enat, H.; Published by: Applied Surface Science Published on: 09/2014 YEAR: 2014   DOI: 10.1016/j.apsusc.2014.07.007 Boron nitride; Heat treatment; Mechanical properties; Optical properties; parker solar probe; Proton irradiation; Solar Probe Plus |
Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun\textquoterights surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1)\ O ... McComas, D.; Alexander, N.; Angold, N.; Bale, S.; Beebe, C.; Birdwell, B.; Boyle, M.; Burgum, J.; Burnham, J.; Christian, E.; Cook, W.; Cooper, S.; Cummings, A.; Davis, A.; Desai, M.; Dickinson, J.; Dirks, G.; Do, D.; Fox, N.; Giacalone, J.; Gold, R.; Gurnee, R.; Hayes, J.; Hill, M.; Kasper, J.; Kecman, B.; Klemic, J.; Krimigis, S.; Labrador, A.; Layman, R.; Leske, R.; Livi, S.; Matthaeus, W.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Nelson, K.; Parker, C.; Rankin, J.; Roelof, E.; Schwadron, N.; Seifert, H.; Shuman, S.; Stokes, M.; Stone, E.; Vandegriff, J.; Velli, M.; von Rosenvinge, T.; Weidner, S.; Wiedenbeck, M.; Wilson, P.; Published by: Space Science Reviews Published on: 07/2014 YEAR: 2014   DOI: 10.1007/s11214-014-0059-1 CMEs; Corona; ISIS; Parker Data Used; Particle acceleration; SEPs; Solar energetic particles; Solar Probe Plus |
2013 |
This paper describes the implementation of a solar simulator, know as the Solar Environment Simulator (SES), that can simulate solar flux levels up to those encountered at 9.8 solar radii. The paper outlines the design, and the challenges of realizing the SES. It also describes its initial uses for proving out the design of the Solar Winds Electrons, Alphas, and Protons (SWEAP) Faraday cup. The upcoming Solar Probe Plus (SPP) mission requires that its in-situ plasma instrument (the Faraday Cup) survive and operate over an un ... Cheimets, Peter; Bookbinder, Jay; Freeman, Mark; Gates, Richard; Gauron, Thomas; Guth, Giora; Kasper, Justin; McCracken, Kenneth; Podgorski, William; Published by: Proceedings of SPIE - The International Society for Optical Engineering Published on: Arc lamps; Power control; Probes; Test facilities; Parker Engineering |
Technology development for the solar probe plus faraday cup The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ... Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth; Published by: Proceedings of SPIE - The International Society for Optical Engineering Published on: |
This paper describes the implementation of a solar simulator, know as the Solar Environment Simulator (SES), that can simulate solar flux levels up to those encountered at 9.8 solar radii. The paper outlines the design, and the challenges of realizing the SES. It also describes its initial uses for proving out the design of the Solar Winds Electrons, Alphas, and Protons (SWEAP) Faraday cup. The upcoming Solar Probe Plus (SPP) mission requires that its in-situ plasma instrument (the Faraday Cup) survive and operate over an un ... Cheimets, Peter; Bookbinder, Jay; Freeman, Mark; Gates, Richard; Gauron, Thomas; Guth, Giora; Kasper, Justin; McCracken, Kenneth; Podgorski, William; Published by: Published on: YEAR: 2013   DOI: 10.1117/12.2024051 |
Technology development for the Solar Probe Plus Faraday Cup The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ... Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth; Published by: Published on: YEAR: 2013   DOI: 10.1117/12.2024983 |
2012 |
A simple 3D plasma instrument with an electrically adjustable geometric factor for space research We report on the design and experimental verification of a novel charged particle detector and an energy spectrometer with variable geometric factor functionality. Charged particle populations in the inner heliosphere create fluxes that can vary over many orders of magnitude in flux intensity. Space missions that plan to observe plasma fluxes, for example when travelling close to the Sun or to a planetary magnetosphere, require rapid particle measurements over the full three-dimensional velocity distribution. Traditionall ... Rohner, U; Saul, L; Wurz, P; Allegrini, F; Scheer, J; McComas, D; Published by: Measurement Science and Technology Published on: 02/2012 YEAR: 2012   DOI: 10.1088/0957-0233/23/2/025901 |
The Solar Probe Plus (SP+) mission will approach the Sun as close as 9.5 solar radii in order to understand the origin of the solar corona heating and the acceleration of the solar wind. Submitted to such extreme environmental conditions, a thermal protection system is considered to protect the payload of the SP+ spacecraft. Carbon-based materials are good candidate to fulfill this role and critical point remains the equilibrium temperature reached at perihelion by the heat shield. In this paper, experimental results obta ... Balat-Pichelin, M.; Eck, J.; Sans, J.L.; Published by: Applied Surface Science Published on: 01/2012 YEAR: 2012   DOI: 10.1016/j.apsusc.2011.10.142 Carbon material; High temperature; Ion etching; Parker Data Used; Solar Probe Plus; Thermal radiative properties; VUV radiation |
High-irradiance high-temperature vacuum testing of the Solar Probe Plus array design The Solar Probe Plus (SPP) spacecraft will fly further into the Sun s corona than any previous mission, reaching a minimum perihelion at 9.5 solar radii from the center of the Sun. The solar arrays powering the spacecraft will operate under unusually high irradiances and temperatures. The array design, material choices, and necessary test facilities for SPP are therefore quite different from those used on traditional space panels. This paper gives an overview of the high-irradiance high-temperature vacuum (HIHT-Vac) reliabil ... Boca, Andreea; Blumenfeld, Philip; Crist, Kevin; De Zetter, Karen; Mitchell, Richard; Richards, Benjamin; Sarver, Charles; Sharps, Paul; Stan, Mark; Tourino, Cory; Published by: Conference Record of the IEEE Photovoltaic Specialists Conference Published on: Photovoltaic cells; Probes; Solar cell arrays; Sun; Parker Engineering |
2011 |
Concentrated Solar Energy to Study High Temperature Materials for Space and Energy In this paper, the concentrated solar energy is used as a source of high temperatures to study the physical and chemical behaviors and intrinsic properties of refractory materials. The atmospheres surrounding the materials have to be simulated in experimental reactors to characterize the materials in real environments. Several application fields are concerned such as the aerospace and the energy fields: examples of results will be given for the heat shield of the Solar Probe Plus mission (NASA) for the SiC/SiC material that ... Charpentier, Ludovic; Dawi, Kamel; Eck, Julien; Pierrat, Baptiste; Sans, Jean-Louis; Balat-Pichelin, Marianne; Published by: JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME Published on: 08/2011 YEAR: 2011   DOI: 10.1115/1.4004241 |
The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the ... Eck, J.; Sans, J.-L.; Balat-Pichelin, M.; Published by: Applied Surface Science Published on: 02/2011 YEAR: 2011   DOI: 10.1016/j.apsusc.2010.10.139 |
Testing of solar cells for the solar probe plus mission The Solar Probe Plus (SPP) is an upcoming mission in NASA s "Living with a Star Program" to be built by the Johns Hopkins University Applied Physics Laboratory. The spacecraft will orbit the sun for a primary mission duration of seven years, making a closest approach to the sun at a distance of 0.0442 AU. Instrumentation on SPP will focus on two primary science investigations: the sun s coronal heating and solar wind acceleration, and the production, evolution, and transport of solar energetic particles. The mission is sched ... Scheiman, David; Piszczor, Michael; Snyder, David; McNatt, Jeremiah; Landis, Geoffrey; Isabella, Louis; Putt, Nicolas; Published by: Conference Record of the IEEE Photovoltaic Specialists Conference Published on: Gallium compounds; Heat shielding; NASA; Orbits; Probes; Solar cell arrays; Space flight; Parker Engineering |
2010 |
Combined effect of high temperature and VUV radiation on carbon-based materials For the next exploration of the sun, missions like Solar Probe+ (NASA) or Phoibos (ESA) will be launched to answer to fundamental questions on the solar corona heating and solar winds origin. Such solar probes missions that will pass very close to the sun, respectively at 9.5 and 4 solar radii (Rs), need thermal shield to protect the payload and the instrumentation. Carbon/carbon composites can withstand the severe environment encountered during the pass of the sun and have to be studied to understand their physico-chemical ... Eck, J.; Sans, J.L.; Balat-Pichelin, M.; Published by: ECS Transactions Published on: Carbon; Carbon carbon composites; Heat shielding; NASA; Probes; Space flight; Parker Engineering |