Notice:
|
Found 110 entries in the Bibliography.
Showing entries from 101 through 110
2019 |
Probing the energetic particle environment near the Sun NASA\textquoterights Parker Solar Probe mission recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: "impulsive" events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in ... McComas, D.; Christian, E.; Cohen, C.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Krimigis, S.; Labrador, A.; Leske, R.; Malandraki, O.; Matthaeus, W.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Posner, A.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Bale, S.; Kasper, J.; Case, A.; Korreck, K.; MacDowall, R.; Pulupa, M.; Stevens, M.; Rouillard, A.; Published by: Nature Published on: 12/2019 YEAR: 2019   DOI: 10.1038/s41586-019-1811-1 |
2017 |
A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relax ... Kasper, J.; Klein, K.; Weber, T.; Maksimovic, M.; Zaslavsky, A.; Bale, S.; Maruca, B.; Stevens, M.; Case, A.; Published by: The Astrophysical Journal Published on: 11/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa84b1 acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence |
2016 |
Modification of Velocity Power Spectra by Thermal Plasma Instrumentation The upcoming Solar Probe Plus mission (Launch 2018) will launch with the newest and fastest space plasma instrumentation to date. The Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, which measures thermal plasma, will make measurements faster than the local gyro-frequency and proton plasma frequency. By developing an end-to-end computer model of a SWEAP instrument, this work explores the specific instrumental effects of thermal space plasma measurement, particularly in the reproduction of velocity power s ... Whittlesey, P.; Zank, G.; Cirtain, J.; Wright, K.; Case, A.; Kasper, J.; Published by: Published on: YEAR: 2016   DOI: 10.1088/1742-6596/767/1/012026 |
2015 |
The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ... Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary; Published by: Space Science Reviews Published on: 10/2015 YEAR: 2015   DOI: 10.1007/s11214-015-0206-3 Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP |
2014 |
Solar Probe Plus, scheduled to launch in 2018, is a NASA mission that will fly through the Sun\textquoterights atmosphere for the first time. It will employ a combination of in situ plasma measurements and remote sensing imaging to achieve the mission\textquoterights primary goal: to understand how the Sun\textquoterights corona is heated and how the solar wind is accelerated. The Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite consists of a Faraday cup and three electrostatic analyzers. In order to accom ... Korreck, Kelly; Kasper, Justin; Case, Anthony; Daigneau, Peter; Bookbinder, Jay; Larson, Davin; Halekas, Jasper; Stevens, Michael; Ludlam, Micheal; Marchant, Will; Published by: Published on: YEAR: 2014   DOI: 10.1117/12.2057314 |
2013 |
AIP Conference ProceedingsDesigning a sun-pointing Faraday cup for solar probe plus The NASA Solar Probe Plus (SPP) mission will be the first spacecraft to pass through the sub-Alfv\ enic solar corona. The objectives of the mission are to trace the flow of energy that heats and accelerates the solar corona and solar wind, to determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and to explore mechanisms that accelerate and transport energetic particles. The Solar Wind Electrons, Alphas, and Protons (SWEAP) Investigation instrument suite on SPP will measu ... Case, A.; Kasper, J.; Daigneau, P.; Caldwell, D.; Freeman, M.; Gauron, T.; Maruca, B.; Bookbinder, J.; Korreck, K.; Cirtain, J.; Effinger, M.; Halekas, J.; Larson, D.; Lazarus, A.; Stevens, M.; Taylor, E.; Wright, K.; Published by: Published on: 01/2013 YEAR: 2013   DOI: 10.1063/1.4811083 |
Technology development for the solar probe plus faraday cup The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ... Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth; Published by: Proceedings of SPIE - The International Society for Optical Engineering Published on: |
Mechanical design of the solar probe cup instrument on solar probe plus The Solar Probe Cup (SPC) Instrument is a Sun-facing Faraday Cup instrument slated for launch aboard the Solar Probe Plus (SPP) spacecraft in 2018. SPC is one of two instruments onboard the Solar Wind Electrons Alphas Protons (SWEAP) instrument suite and is the only SPP charged particle instrument that will not be shielded behind the spacecraft s Thermal Protection System (TPS). The 7-year SPP mission will take SPC on 24 solar encounters at perihelia ranging from 35 to 9.86 solar radii (RS). The SPC components will encounter ... Bergner, H.; Caldwell, D.; Case, A.W.; Daigneau, P.; Freeman, M.; Kasper, J.; Published by: Proceedings of SPIE - The International Society for Optical Engineering Published on: |
Mechanical Design of the Solar Probe Cup instrument on Solar Probe Plus The Solar Probe Cup (SPC) Instrument is a Sun-facing Faraday Cup instrument slated for launch aboard the Solar Probe Plus (SPP) spacecraft in 2018. SPC is one of two instruments onboard the Solar Wind Electrons Alphas Protons (SWEAP) instrument suite and is the only SPP charged particle instrument that will not be shielded behind the spacecraft s Thermal Protection System (TPS). The 7-year SPP mission will take SPC on 24 solar encounters at perihelia ranging from 35 to 9.86 solar radii (R-S). The SPC components will encounte ... Bergner, H.; Caldwell, D.; Case, A.; Daigneau, P.; Freeman, M.; Kasper, J.; Published by: Published on: YEAR: 2013   DOI: 10.1117/12.2022761 |
Technology development for the Solar Probe Plus Faraday Cup The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ... Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth; Published by: Published on: YEAR: 2013   DOI: 10.1117/12.2024983 |