PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 231 entries in the Bibliography.


Showing entries from 51 through 100


2020

Modeling the Transport Processes of a Pair of Solar Energetic Particle Events Observed by Parker Solar Probe Near Perihelion

We present model calculations of the transport processes of solar energetic particles in the corona and interplanetary medium for two events detected by Parker Solar Probe near its second perihelion on 2019 April 2 and April 4. In the 2019 April 2 event, the \<100 keV proton differential intensity measured by the Integrated Science Investigation of the Sun Low-Energy Energetic Particle instrument increased by more than a factor of 10 above the pre-event intensity, whereas the \~1 MeV proton differential intensity detec ...

Zhao, Lulu; Zhang, Ming; Lario, David;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab97b3

Parker Data Used; parker solar probe; Solar energetic particles; Solar Probe Plus

(Non)radial Solar Wind Propagation through the Heliosphere

The solar wind nonradial velocity components observed beyond the Alfv\ en point are usually attributed to waves, the interaction of different streams, or other transient phenomena. However, Earth-orbiting spacecraft as well as monitors at L1 indicate systematic deviations of the wind velocity from the radial direction. Since these deviations are of the order of several degrees, the calibration of the instruments is often questioned. This paper investigates for the first time the evolution of nonradial components of the so ...

Němeček, Zdeněk; a, Tereza; a, Jana; Richardson, John; Simůnek, Jiř\; Stevens, Michael;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab9ff7

Parker Data Used; parker solar probe; Solar Probe Plus

On the Shape of SEP Electron Spectra: The Role of Interplanetary Transport

We address the effect of particle scattering on the energy spectra of solar energetic electron events using (I) an observational and (II) a modeling approach. (I) We statistically study observations of the STEREO spacecraft, using directional electron measurements made with the Solar Electron and Proton Telescope in the range of 45-425 keV. We compare the energy spectra of the anti-Sunward propagating beam with that of the backward-scattered population and find that, on average, the backward-scattered population shows a h ...

Strauss, R.; Dresing, N.; Kollhoff, A.; Brüdern, M.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab91b0

1491; 1693; 830; parker solar probe; Solar Probe Plus

The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was ...

Lario, D.; Balmaceda, L.; Alzate, N.; Mays, M.; Richardson, I.; Allen, R.; Florido-Llinas, M.; Nieves-Chinchilla, T.; Koval, A.; Lugaz, N.; Jian, L.; Arge, C.; Macneice, P.; Odstrcil, D.; Morgan, H.; Szabo, A.; Desai, M.; Whittlesey, P.; Stevens, M.; Ho, G.; Luhmann, J.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab9942

Parker Data Used; parker solar probe; Solar Probe Plus

Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed

Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ...

Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab93b6

1534; parker solar probe; Solar Probe Plus

A new view of energetic particles from stream interaction regions observed by Parker Solar Probe

Early observations from the first orbit of Parker Solar Probe (PSP) show recurrent stream interaction regions that form close to the Sun. Energetic particle enhancements were observed on the 320th-326th day of the year 2018, which corresponds to ~1-7 days after the passage of the stream interface between faster and slower solar wind. Energetic particles stream into the inner heliosphere to the PSP spacecraft near 0.33 au (71 solar radii) where they are measured by the Integrated Science Investigation of the Sun (IS⊙IS). Th ...

Schwadron, N.; Joyce, C.; Aly, A.; Cohen, C.; Desai, M.; McComas, D.; Niehof, J.; Möbius, E.; al., et;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2020     DOI: "10.1051/0004-6361/202039352"

Parker Data Used; parker solar probe; Solar Probe Plus

Coronal-jet-producing Minifilament Eruptions as a Possible Source of Parker Solar Probe Switchbacks

The Parker Solar Probe (PSP) has observed copious rapid magnetic field direction changes in the near-Sun solar wind. These features have been called "switchbacks," and their origin is a mystery. But their widespread nature suggests that they may be generated by a frequently occurring process in the Sun\textquoterights atmosphere. We examine the possibility that the switchbacks originate from coronal jets. Recent work suggests that many coronal jets result when photospheric magnetic flux cancels, and forms a small-scale "m ...

Sterling, Alphonse; Moore, Ronald;

Published by: The Astrophysical Journal      Published on: 06/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab96be

1503; 1504; 1534; 1981; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

First Radio Evidence for Impulsive Heating Contribution to the Quiet Solar Corona

This Letter explores the relevance of nanoflare-based models for heating the quiet Sun corona. Using meterwave data from the Murchison Widefield Array, we present the first successful detection of impulsive emissions down to flux densities of \~mSFU, about two orders of magnitude weaker than earlier attempts. These impulsive emissions have durations ≲1 s and are present throughout the quiet solar corona. The fractional time occupancy of these impulsive emissions at a given region is ≲10\%. The histograms of these impu ...

Mondal, Surajit; Oberoi, Divya; Mohan, Atul;

Published by: The Astrophysical Journal      Published on: 06/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab8817

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Quiet solar corona; Solar corona; Solar coronal heating; Solar coronal radio emission; Solar Probe Plus

Effects of Radial Distances on Small-scale Magnetic Flux Ropes in the Solar Wind

Small-scale magnetic flux ropes (SFRs) in the solar wind have been studied for decades. Statistical analysis utilizing various in situ spacecraft measurements is the main observational approach to investigating the generation and evolution of these small-scale structures. Based on the Grad-Shafranov reconstruction technique, we use the automated detection algorithm to build the databases of these small-scale structures via various spacecraft measurements at different heliocentric distances. We present the SFR properties, ...

Chen, Yu; Hu, Qiang;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab8294

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus

Global Circulation of the Open Magnetic Flux of the Sun

The global circulation of the open magnetic flux of the Sun, the component of the solar magnetic field that opens into the heliosphere, and the consequences of the global circulation were proposed by Fisk and coworkers in the early 2000s. The Parker Solar Probe, on its initial encounters with the Sun, has provided direct confirmation of both the global circulation and the physical mechanism by which the circulation occurs, transport by interchange reconnection between open magnetic flux and large coronal loops. The implic ...

Fisk, L.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab8acd

Parker Data Used; parker solar probe; Solar Probe Plus

The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe\textquoterights First Orbit

We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe\textquoterights (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Su ...

Lavraud, B.; Fargette, N.; Réville, V.; Szabo, A.; Huang, J.; Rouillard, A.; Viall, N.; Phan, T.; Kasper, J.; Bale, S.; Berthomier, M.; Bonnell, J.; Case, A.; de Wit, Dudok; Eastwood, J.; enot, V.; Goetz, K.; Griton, L.; Halekas, J.; Harvey, P.; Kieokaew, R.; Klein, K.; Korreck, K.; Kouloumvakos, A.; Larson, D.; Lavarra, M.; Livi, R.; Louarn, P.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Nieves-Chinchilla, T.; Pinto, R.; Poirier, N.; Pulupa, M.; Raouafi, N.; Stevens, M.; Toledo-Redondo, S.; Whittlesey, P.;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab8d2d

Parker Data Used; parker solar probe; Solar Probe Plus

A Merged Search-Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS

NASA\textquoterights Parker Solar Probe (PSP) mission is currently investigating the local plasma environment of the inner heliosphere (\<0.25 R) using both in situ and remote sensing instrumentation. Connecting signatures of microphysical particle heating and acceleration processes to macroscale heliospheric structure requires sensitive measurements of electromagnetic fields over a large range of physical scales. The FIELDS instrument, which provides PSP with in situ measurements of electromagnetic field ...

Bowen, T.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Gruesbeck, J.; Harvey, P.; Jannet, G.; Koval, A.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Sheppard, D.; Szabo, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: 10.1029/2020JA027813

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Instrumentation and Detectors; Physics - Space Physics; Solar Probe Plus

Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves

Parker Solar Probe (PSP), NASA\textquoterights latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSP\textquote ...

Verniero, J.; Larson, D.; Livi, R.; Rahmati, A.; McManus, M.; Pyakurel, Sharma; Klein, K.; Bowen, T.; Bonnell, J.; Alterman, B.; Whittlesey, P.; Malaspina, David; Bale, S.; Kasper, J.; Case, A.; Goetz, K.; Harvey, P.; Korreck, K.; MacDowall, R.; Pulupa, M.; Stevens, M.; de Wit, Dudok;

Published by: The Astrophysical Journal Supplement Series      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab86af

Alfv\ en waves; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Plasma physics; Solar Probe Plus; Solar wind; Space plasmas

Project Lyra: Catching 1I/\textquoteleftOumuamua \textendash Mission opportunities after 2024

In October 2017, the first interstellar object within our solar system was discovered. Today designated 1I/\textquoterightOumuamua, it shows characteristics that have never before been observed in a celestial body. Due to these characteristics, an in-situ investigation of 1I would be of extraordinary scientific value. Previous studies have demonstrated that a mission to 1I/\textquoterightOumuamua is feasible using current and near-term technologies, however, with an anticipated launch date of 2020-2021. This is too soon t ...

Hibberd, Adam; Hein, Andreas; Eubanks, Marshall;

Published by: Acta Astronautica      Published on: 05/2020

YEAR: 2020     DOI: 10.1016/j.actaastro.2020.01.018

DeltaV; Interplanetary; Optimization; Oumuamua; parker solar probe; Physics - Space Physics; Solar Oberth; Solar Probe Plus; Trajectory

Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind

In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements\textemdashakin to what is observed in closed coronal loops\textemdashthe slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the ...

Réville, Victor; Velli, Marco; Rouillard, Alexis; Lavraud, Benoit; Tenerani, Anna; Shi, Chen; Strugarek, Antoine;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab911d

Astrophysics - Solar and Stellar Astrophysics; Magnetohydrodynamics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Slow solar wind; Solar magnetic reconnection; Solar Probe Plus; Solar wind

Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations

The shape of the electron velocity distribution function plays an important role in the dynamics of the solar wind acceleration. Electrons are normally modeled with three components, the core, the halo, and the strahl. We investigate how well the fast strahl electrons in the inner heliosphere preserve the information about the coronal electron temperature at their origin. We analyzed the data obtained by two missions, Helios, spanning the distances between 65 and 215 RS, and Parker Solar Probe (PSP), reaching d ...

Bercic, Laura; Larson, Davin; Whittlesey, Phyllis; Maksimovic, Milan; Badman, Samuel; Landi, Simone; Matteini, Lorenzo; Bale, Stuart.; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael;

Published by: The Astrophysical Journal      Published on: 04/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab7b7a

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

The evolution of inverted magnetic fields through the inner heliosphereABSTRACT

Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfv\ enic, HMF inversions in the inner heliosphere, known as \textquoterightswitchbacks\textquoteright, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. ...

Macneil, Allan; Owens, Mathew; Wicks, Robert; Lockwood, Mike; Bentley, Sarah; Lang, Matthew;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 04/2020

YEAR: 2020     DOI: 10.1093/mnras/staa951

Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: heliosphere

ICME Evolution in the Inner Heliosphere

ICMEs (interplanetary coronal mass ejections), the heliospheric counterparts of what is observed with coronagraphs at the Sun as CMEs, have been the subject of intense interest since their close association with geomagnetic storms was established in the 1980s. These major interplanetary plasma and magnetic field transients, often preceded and accompanied by solar energetic particles (SEPs), interact with planetary magnetospheres, ionospheres, and upper atmospheres in now fairly well-understood ways, although their details ...

Luhmann, J.; Gopalswamy, N.; Jian, L.; Lugaz, N.;

Published by: Solar Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01624-0

CME; ICME; parker solar probe; Solar Probe Plus; space weather

In Situ Observations of Interplanetary Dust Variability in the Inner Heliosphere

This work examines the variation of interplanetary dust count rates and directionality during the first three solar encounters made by the Parker Solar Probe spacecraft, covering distances between 0.65 au (\~140 solar radii, RS) and 0.16 au (\~35 RS). Dust detections are made by the FIELDS instrument via plasma clouds, produced by impact ionization of dust grains on spacecraft surfaces and resultant spacecraft potential perturbations. Dust count rates and inferred densities are found to vary by \~50\ ...

Malaspina, David; Szalay, Jamey; y, Petr; Page, Brent; Bale, Stuart; Bonnell, John; de Wit, Thierry; Goetz, Keith; Goodrich, Katherine; Harvey, Peter; MacDowall, Robert; Pulupa, Marc;

Published by: The Astrophysical Journal      Published on: 04/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab799b

Parker Data Used; parker solar probe; Solar Probe Plus

Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements

One of the discoveries of the Parker Solar Probe during its first encounters with the Sun is ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were named "switchbacks" since some of them show a full reversal of the radial component of the magnetic field and then return to "regular" conditions. We carried out an analysis of three typical switchback structures having different characteristics: I. Alfv\ enic structure, where the variations of the magnetic ...

Krasnoselskikh, V.; Larosa, A.; Agapitov, O.; de Wit, Dudok; Moncuquet, M.; Mozer, F.; Stevens, M.; Bale, S.; Bonnell, J.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Raouafi, N.; Revillet, C.; Velli, M.; Wygant, J.;

Published by: The Astrophysical Journal      Published on: 04/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab7f2d

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles

The Wide-field Imager for Parker Solar Probe (WISPR) captures unprecedented white-light images of the solar corona and inner heliosphere. Thanks to the uniqueness of the Parker Solar Probe\textquoterights (PSP) orbit, WISPR is able to image "locally" coronal structures at high spatial and time resolutions. The observed plane of sky, however, rapidly changes because of the PSP\textquoterights high orbital speed. Therefore, the interpretation of the dynamics of the coronal structures recorded by WISPR is not straightforward ...

Nisticò, Giuseppe; Bothmer, Volker; Vourlidas, Angelos; Liewer, Paulett; Thernisien, Arnaud; Stenborg, Guillermo; Howard, Russell;

Published by: Solar Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01626-y

Astrophysics - Solar and Stellar Astrophysics; Corona; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

The Width, Density, and Outflow of Solar Coronal Streamers

Characterizing the large-scale structure and plasma properties of the inner corona is crucial to understanding the source and subsequent expansion of the solar wind and related space weather effects. Here, we apply a new coronal rotational tomography method, along with a method to narrow streamers and refine the density estimate, to COR2A/Solar Terrestrial Relations Observatory observations from a period near solar minimum and maximum, gaining density maps for heights between 4 and 8R. The coronal structure ...

Morgan, Huw; Cook, Anthony;

Published by: The Astrophysical Journal      Published on: 04/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab7e32

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Solar Probe Plus

Dependence of the Interplanetary Magnetic Field on Heliocentric Distance at 0.3\textendash1.7~AU: A Six-Spacecraft Study

We use magnetometer data taken simultaneously by MESSENGER, VEX, STEREO and ACE to characterize the variation of the interplanetary magnetic field (IMF) with heliocentric distance, rh, for rh≲ 1 AU. Power law fits (a rh b) to the individual IMF components and magnitude indicate that, on average, the IMF is more tightly wound and its strength decreases less rapidly with rh than the Parker spiral prediction. During Solar Cycle 24, temporal changes in b were insignificant, but changes in amplitude, a, were correlated with ...

Hanneson, Cedar; Johnson, Catherine; Mittelholz, Anna; Asad, Manar; Goldblatt, Colin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027139

Heliosphere; IMF; interplanetary magnetic field; Mars; Mercury; parker solar probe; Solar Probe Plus; Venus

Improving Predictions of High-Latitude Coronal Mass Ejections Throughout the Heliosphere

Predictions of the impact of coronal mass ejections (CMEs) in the heliosphere mostly rely on cone CME models, whose performances are optimized for locations in the ecliptic plane and at 1 AU (e.g., at Earth). Progresses in the exploration of the inner heliosphere, however, advocate the need to assess their performances at both higher latitudes and smaller heliocentric distances. In this work, we perform 3-D magnetohydrodynamics simulations of artificial cone CMEs using the EUropean Heliospheric FORecasting Information Ass ...

Scolini, C.; e, Chan\; Pomoell, J.; Rodriguez, L.; Poedts, S.;

Published by: Space Weather      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019SW002246

coronal mass ejections; forecasting; Heliosphere; modeling; parker solar probe; Solar Probe Plus

In-situ Switchback Formation in the Expanding Solar Wind

Recent near-Sun solar-wind observations from Parker Solar Probe have found a highly dynamic magnetic environment, permeated by abrupt radial-field reversals, or "switchbacks." We show that many features of the observed turbulence are reproduced by a spectrum of Alfv\ enic fluctuations advected by a radially expanding flow. Starting from simple superpositions of low-amplitude outward-propagating waves, our expanding-box compressible magnetohydrodynamic simulations naturally develop switchbacks because (i) the normalized am ...

Squire, J.; Chandran, B.; Meyrand, R.;

Published by: The Astrophysical Journal      Published on: 03/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab74e1

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Plasma Waves in Space: The Importance of Properly Accounting for the Measuring Device

Electric fields are generally measured or calculated using two intuitive assumptions: (1) the electric field equals the voltage divided by the antenna length when the antenna is electromagnetically short (2) the antenna responds best to electric field along its length. Both assumptions are often incorrect for electrostatic fields because they scale as the Debye length or as the electron gyroradius, which may be smaller than the antenna length. Taking into account this little-known fact enables us to complete or correct se ...

Meyer-Vernet, Nicole; Moncuquet, Michel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027723

electric antennas; parker solar probe; plasma waves; quasi-thermal noise; Solar Probe Plus; Space plasmas

Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R Radii

Observations by the Parker Solar Probe mission of the solar wind at \~35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 to 20-80 Hz (from 0.2 to 0.5 fce). The polarization of these ...

Agapitov, O.; de Wit, Dudok; Mozer, F.; Bonnell, J.; Drake, J.; Malaspina, D.; Krasnoselskikh, V.; Bale, S.; Whittlesey, P.; Case, A.; Chaston, C.; Froment, C.; Goetz, K.; Goodrich, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Pulupa, M.; Revillet, C.; Stevens, M.; Wygant, J.;

Published by: The Astrophysical Journal      Published on: 03/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab799c

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD ...

Nieves-Chinchilla, Teresa; Szabo, Adam; Korreck, Kelly; Alzate, Nathalia; Balmaceda, Laura; Lavraud, Benoit; Paulson, Kristoff; Narock, Ayris; Wallace, Samantha; Jian, Lan; Luhmann, Janet; Morgan, Huw; Higginson, Aleida; Arge, Charles; Bale, Stuart; Case, Anthony; de Wit, Thierry; Giacalone, Joe; Goetz, Keith; Harvey, Peter; Jones-Melosky, Shaela; Kasper, J.; Larson, Davin; Livi, Roberto; McComas, David; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Raouafi, Nour; Schwadron, Nathan; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab61f5

Parker Data Used; parker solar probe; Solar Probe Plus

Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the Parker Solar Probe and Comparison with Helios

We discuss the solar wind electron temperatures Te as measured in the nascent solar wind by Parker Solar Probe during its first perihelion pass. The measurements have been obtained by fitting the high-frequency part of quasi-thermal noise spectra recorded by the Radio Frequency Spectrometer. In addition we compare these measurements with those obtained by the electrostatic analyzer discussed in Halekas et al. These first electron observations show an anticorrelation between Te and the wind bulk speed ...

Maksimovic, M.; Bale, S.; c, Ber\v; Bonnell, J.; Case, A.; de Wit, Dudok; Goetz, K.; Halekas, J.; Harvey, P.; Issautier, K.; Kasper, J.; Korreck, K.; Jagarlamudi, Krishna; Lahmiti, N.; Larson, D.; Lecacheux, A.; Livi, R.; MacDowall, R.; Malaspina, D.; c, M.; Meyer-Vernet, N.; Moncuquet, M.; Pulupa, M.; Salem, C.; Stevens, M.; ak, \v; Velli, M.; Whittlesey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab61fc

Parker Data Used; parker solar probe; Solar Probe Plus

Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe \textquoterights First Perihelion\textemdashA Partial-variance-of-increments Analysis

During the Parker Solar Probe\textquoterights (PSP) first perihelion pass, the spacecraft reached within a heliocentric distance of ̃37 R and observed numerous magnetic and flow structures characterized by sharp gradients. To better understand these intermittent structures in the young solar wind, an important property to examine is their degree of correlation in time and space. To this end, we use the well-tested partial variance of increments (PVI) technique to identify intermittent events in FIELDS and S ...

Chhiber, Rohit; Goldstein, M; Maruca, B.; Chasapis, A.; Matthaeus, W.; Ruffolo, D.; Bandyopadhyay, R.; Parashar, T.; Qudsi, R.; de Wit, Dudok; Bale, S.; Bonnell, J.; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Korreck, K.; Case, A.; Stevens, M.; Whittlesey, P.; Larson, D.; Livi, R.; Velli, M.; Raouafi, N.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab53d2

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Cross Helicity Reversals in Magnetic Switchbacks

We consider 2D joint distributions of normalized residual energy, σr(s, t), and cross helicity, σc(s, t), during one day of Parker Solar Probe\textquoterights (PSP\textquoterights) first encounter as a function of wavelet scale s. The broad features of the distributions are similar to previous observations made by Helios in slow solar wind, namely well-correlated and fairly Alfv\ enic wind, except for a population with negative cross helicity that is seen at shorter wavelet scales. We show that thi ...

McManus, Michael; Bowen, Trevor; Mallet, Alfred; Chen, Christopher; Chandran, Benjamin; Bale, Stuart; Larson, Davin; de Wit, Thierry; Kasper, J.; Stevens, Michael; Whittlesey, Phyllis; Livi, Roberto; Korreck, Kelly; Goetz, Keith; Harvey, Peter; Pulupa, Marc; MacDowall, Robert; Malaspina, David; Case, Anthony; Bonnell, J.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab6dce

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe

Radio waves are strongly scattered in the solar wind, so that their apparent sources seem to be considerably larger and shifted than the actual ones. Since the scattering depends on the spectrum of density turbulence, a better understanding of the radio wave propagation provides indirect information on the relative density fluctuations, ϵ=⟨δn⟩/⟨n⟩\ ϵ=⟨δn⟩/⟨n⟩ , at the effective turbulence scale length. Here, we analyzed 30 type III bursts detected by Parker Sola ...

Krupar, Vratislav; Szabo, Adam; Maksimovic, Milan; Kruparova, Oksana; Kontar, Eduard; Balmaceda, Laura; Bonnin, Xavier; Bale, Stuart; Pulupa, Marc; Malaspina, David; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert; Kasper, Justin; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Hegedus, Alexander;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab65bd

Astrophysics - Earth and Planetary Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Detailed Imaging of Coronal Rays with the Parker Solar Probe

The Wide-field Imager for Solar PRobe (WISPR) obtained the first high-resolution images of coronal rays at heights below 15 R when the Parker Solar Probe (PSP) was located inside 0.25 au during the first encounter. We exploit these remarkable images to reveal the structure of coronal rays at scales that are not easily discernible in images taken from near 1 au. To analyze and interpret WISPR observations, which evolve rapidly both radially and longitudinally, we construct a latitude versus time map using the ...

Poirier, Nicolas; Kouloumvakos, Athanasios; Rouillard, Alexis; Pinto, Rui; Vourlidas, Angelos; Stenborg, Guillermo; Valette, Emeline; Howard, Russell; Hess, Phillip; Thernisien, Arnaud; Rich, Nathan; Griton, Lea; Indurain, Mikel; Raouafi, Nour-Edine; Lavarra, Michael; Réville, Victor;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab6324

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Electrons in the Young Solar Wind: First Results from the Parker Solar Probe

The Solar Wind Electrons Alphas and Protons experiment on the Parker Solar Probe (PSP) mission measures the three-dimensional electron velocity distribution function. We derive the parameters of the core, halo, and strahl populations utilizing a combination of fitting to model distributions and numerical integration for ̃100,000 electron distributions measured near the Sun on the first two PSP orbits, which reached heliocentric distances as small as ̃0.17 au. As expected, the electron core density and temperature increa ...

Halekas, J.; Whittlesey, P.; Larson, D.; McGinnis, D.; Maksimovic, M.; Berthomier, M.; Kasper, J.; Case, A.; Korreck, K.; Stevens, M.; Klein, K.; Bale, S.; MacDowall, R.; Pulupa, M.; Malaspina, D.; Goetz, K.; Harvey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab4cec

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Energetic Particle Increases Associated with Stream Interaction Regions

The Parker Solar Probe was launched on 2018 August 12 and completed its second orbit on 2019 June 19 with perihelion of 35.7 solar radii. During this time, the Energetic Particle Instrument-Hi (EPI-Hi, one of the two energetic particle instruments comprising the Integrated Science Investigation of the Sun, IS☉IS) measured seven proton intensity increases associated with stream interaction regions (SIRs), two of which appear to be occurring in the same region corotating with the Sun. The events are relatively weak, with ...

Cohen, C.; Christian, E.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Labrador, A.; Leske, R.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Allen, R.; Ho, G.; Jian, L.; Lario, D.; Odstrcil, D.; Bale, S.; Badman, S.; Pulupa, M.; MacDowall, R.; Kasper, J.; Case, A.; Korreck, K.; Larson, D.; Livi, Roberto; Stevens, M.; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab4c38

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Energetic Particle Observations from the Parker Solar Probe Using Combined Energy Spectra from the IS⊙IS Instrument Suite

The Integrated Science Investigations of the Sun (IS☉IS) instrument suite includes two Energetic Particle instruments: EPI-Hi, designed to measure ions from ̃1 to 200 MeV nuc-1, and EPI-Lo, designed to measure ions from ̃20 to ̃15 MeV nuc-1. We present an analysis of eight energetic proton events observed across the energy range of both instruments during Parker Solar Probe\textquoterights (PSP) first two orbits in order to examine their combined energy spectra. Background corrections are applie ...

Joyce, C.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5948

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from Parker Solar Probe

Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is \~10\ 3\ Jkg\ -1\ s\ -1\ \ \~103Jkg-1s-1 , an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe, even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, mu ...

Bandyopadhyay, Riddhi; Goldstein, M.; Maruca, B.; Matthaeus, W.; Parashar, T.; Ruffolo, D.; Chhiber, R.; Usmanov, A.; Chasapis, A.; Qudsi, R.; Bale, Stuart; Bonnell, J.; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Kasper, J.; Korreck, K.; Case, A.; Stevens, M.; Whittlesey, P.; Larson, D.; Livi, R.; Klein, K.; Velli, M.; Raouafi, N.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dae

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind

Stochastic heating (SH) is a nonlinear heating mechanism driven by the violation of magnetic moment invariance due to large-amplitude turbulent fluctuations producing diffusion of ions toward higher kinetic energies in the direction perpendicular to the magnetic field. It is frequently invoked as a mechanism responsible for the heating of ions in the solar wind. Here, we quantify for the first time the proton SH rate Q at radial distances from the Sun as close as 0.16 au, using measurements from the first tw ...

Martinovic, Mihailo; Klein, Kristopher; Kasper, Justin; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Chandran, Benjamin; Alterman, Ben; Huang, Jia; Chen, Christopher; Bale, Stuart; Pulupa, Marc; Malaspina, David; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab527f

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Solar Probe Plus

The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere

The first two orbits of the Parker Solar Probe spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 R\ ⊙\ \ R⊙ ). Here, we present an analysis of this data to study solar wind turbulence at 0.17 au and its evolution out to 1 au. While many features remain similar, key differences at 0.17 au include increased turbulence energy levels by more than an order of magnitude, a magnetic field spectral index of -3/2 matching that of t ...

Chen, C.; Bale, S.; Bonnell, J.; Borovikov, D.; Bowen, T.; Burgess, D.; Case, A.; Chandran, B.; de Wit, Dudok; Goetz, K.; Harvey, P.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Mallet, A.; McManus, M.; Moncuquet, M.; Pulupa, M.; Stevens, M.; Whittlesey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab60a3

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Examining Dust Directionality with the Parker Solar Probe FIELDS Instrument

Parker Solar Probe\textquoterights (PSP\textquoterights) FIELDS instrument provides a measure of the dust impact rate on the spacecraft with a full-coverage summary of the voltages recorded by the spacecraft\textquoterights antennas. From consecutively sampled periods throughout PSP\textquoterights orbit, FIELDS stores the maximum amplitude measured by each active antenna. The occurrence of a dust impact during a given period can be identified by these amplitudes exceeding a few tens of millivolts, and a dust grain\textqu ...

Page, Brent; Bale, Stuart; Bonnell, J.; Goetz, Keith; Goodrich, Katherine; Harvey, Peter; Larsen, Rhiannon; MacDowall, Robert; Malaspina, David; y, Petr; Pulupa, Marc; Szalay, Jamey;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5f6a

Parker Data Used; parker solar probe; Solar Probe Plus

Exploring Solar Wind Origins and Connecting Plasma Flows from the Parker Solar Probe to 1 au: Nonspherical Source Surface and Alfv\ enic Fluctuations

The magnetic field measurements of the FIELDS instrument on the Parker Solar Probe (PSP) have shown intensities, throughout its first solar encounter, that require a very low source surface (SS) height ( R\ SS\ ⩽1.8R\ ⊙\ \ RSS⩽1.8R⊙ ) to be reconciled with magnetic field measurements at the Sun via potential field extrapolation (PFSS). However, during PSP\textquoterights second encounter, the situation went back to a more classic SS height ( R\ SS\ ⩽2 ...

Panasenco, Olga; Velli, Marco; D\textquoterightAmicis, Raffaella; Shi, Chen; Réville, Victor; Bale, Stuart; Badman, Samuel; Kasper, Justin; Korreck, Kelly; Bonnell, J.; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Case, Anthony; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab61f4

Parker Data Used; parker solar probe; Solar Probe Plus

First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe /FIELDS

Heat transport in the solar corona and wind is still a major unsolved astrophysical problem. Because of the key role played by electrons, the electron density and temperature(s) are important prerequisites for understanding these plasmas. We present such in situ measurements along the two first solar encounters of the Parker Solar Probe, between 0.5 and 0.17 au from the Sun, revealing different states of the emerging solar wind near the solar activity minimum. These preliminary results are obtained from a simplified analy ...

Moncuquet, Michel; Meyer-Vernet, Nicole; Issautier, Karine; Pulupa, Marc; Bonnell, J.; Bale, Stuart; de Wit, Thierry; Goetz, Keith; Griton, Lea; Harvey, Peter; MacDowall, Robert; Maksimovic, Milan; Malaspina, David;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5a84

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe

The Parker Solar Probe (PSP) completed its first solar encounter in 2018 November, bringing it closer to the Sun than any previous mission. This allowed in situ investigation of the heliospheric current sheet (HCS) inside the orbit of Venus. The Parker observations reveal a well defined magnetic sector structure placing the spacecraft in a negative polarity region for most of the encounter. The observed current sheet crossings are compared to the predictions of both potential field source surface and magnetohydrodynamic m ...

Szabo, Adam; Larson, Davin; Whittlesey, Phyllis; Stevens, Michael; Lavraud, Benoit; Phan, Tai; Wallace, Samantha; Jones-Mecholsky, Shaela; Arge, Charles; Badman, Samuel; Odstrcil, Dusan; Pogorelov, Nikolai; Kim, Tae; Riley, Pete; Henney, Carl; Bale, Stuart; Bonnell, John; Case, Antony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Koval, Andriy; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dac

Parker Data Used; parker solar probe; Solar Probe Plus

Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter

The Parker Solar Probe (PSP) observed an interplanetary coronal mass ejection (ICME) event during its first orbit around the Sun, among many other events. This event is analyzed by applying a wavelet analysis technique to obtain the reduced magnetic helicity, cross helicity, and residual energy, the first two of which are magnetohydrodynamics (MHD) invariants. Our results show that the ICME, as a large-scale magnetic flux rope, possesses high magnetic helicity, very low cross helicity, and highly negative residual energy, ...

Zhao, L.-L.; Zank, G.; Adhikari, L.; Hu, Q.; Kasper, J.; Bale, S.; Korreck, K.; Case, A.; Stevens, M.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Larson, D.; Livi, R.; Whittlesey, P.; Klein, K.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab4ff1

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Ion-scale Electromagnetic Waves in the Inner Heliosphere

Understanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA\textquoterights Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that t ...

Bowen, Trevor; Mallet, Alfred; Huang, Jia; Klein, Kristopher; Malaspina, David; Stevens, Michael; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chaston, C.; Chen, Christopher; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Howes, Gregory; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; McManus, Michael; Pulupa, Marc; Verniero, J.; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab6c65

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1

Magnetic reconnection in current sheets converts magnetic energy into particle energy. The process may play an important role in the acceleration and heating of the solar wind close to the Sun. Observations from Parker Solar Probe (PSP) provide a new opportunity to study this problem, as it measures the solar wind at unprecedented close distances to the Sun. During the first orbit, PSP encountered a large number of current sheets in the solar wind through perihelion at 35.7 solar radii. We performed a comprehensive survey ...

Phan, T.; Bale, S.; Eastwood, J.; Lavraud, B.; Drake, J.; Oieroset, M.; Shay, M.; Pulupa, M.; Stevens, M.; MacDowall, R.; Case, A.; Larson, D.; Kasper, J.; Whittlesey, P.; Szabo, A.; Korreck, K.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; Horbury, T.; Livi, R.; Malaspina, D.; Paulson, K.; Raouafi, N.; Velli, M.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab55ee

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Parker Solar Probe Observations of a Dust Trail in the Orbit of (3200) Phaethon

We present the identification and preliminary analysis of a dust trail following the orbit of (3200) Phaethon as seen in white-light images recorded by the Wide-field Imager for Parker Solar Probe (WISPR) instrument on the NASA Parker Solar Probe (PSP) mission. During PSP\textquoterights first solar encounter in 2018 November, a dust trail following Phaethon\textquoterights orbit was visible for several days and crossing two fields of view. Preliminary analyses indicate this trail to have a visual magnitude of 15.8 \textp ...

Battams, Karl; Knight, Matthew; Kelley, Michael; Gallagher, Brendan; Howard, Russell; Stenborg, Guillermo;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab6c68

Astrophysics - Earth and Planetary Astrophysics; Parker Data Used; parker solar probe; Solar Probe Plus

Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere

In this work, we present the first results from the flux angle (FA) operation mode of the Faraday Cup instrument on board the Parker Solar Probe (PSP). The FA mode allows rapid measurements of phase space density fluctuations close to the peak of the proton velocity distribution function with a cadence of 293 Hz. This approach provides an invaluable tool for understanding kinetic-scale turbulence in the solar wind and solar corona. We describe a technique to convert the phase space density fluctuations into vector velocit ...

Vech, Daniel; Kasper, Justin; Klein, Kristopher; Huang, Jia; Stevens, Michael; Chen, Christopher; Case, Anthony; Korreck, Kelly; Bale, Stuart; Bowen, Trevor; Whittlesey, Phyllis; Livi, Roberto; Larson, Davin; Malaspina, David; Pulupa, Marc; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab60a2

Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter

We compare magnetic field measurements taken by the FIELDS instrument on board Parker Solar Probe (PSP) during its first solar encounter to predictions obtained by potential field source surface (PFSS) modeling. Ballistic propagation is used to connect the spacecraft to the source surface. Despite the simplicity of the model, our results show striking agreement with PSP\textquoterights first observations of the heliospheric magnetic field from ̃0.5 au (107.5 R) down to 0.16 au (35.7 R). Furthe ...

Badman, Samuel; Bale, Stuart; Oliveros, Juan; Panasenco, Olga; Velli, Marco; Stansby, David; Buitrago-Casas, Juan; eville, Victor; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab4da7

Parker Data Used; parker solar probe; Solar Probe Plus

Magnetic Field Kinks and Folds in the Solar Wind

Parker Solar Probe (PSP) observations during its first encounter at 35.7 R have shown the presence of magnetic field lines that are strongly perturbed to the point that they produce local inversions of the radial magnetic field, known as switchbacks. Their counterparts in the solar wind velocity field are local enhancements in the radial speed, or jets, displaying (in all components) the velocity-magnetic field correlation typical of large amplitude Alfv\ en waves propagating away from the Sun. Switchbacks a ...

Tenerani, Anna; Velli, Marco; Matteini, Lorenzo; eville, Victor; Shi, Chen; Bale, Stuart; Kasper, Justin; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Klein, Kristopher; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab53e1

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus



  1      2      3      4      5