PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1459 entries in the Bibliography.


Showing entries from 51 through 100


2022

The Solar Probe ANalyzer-Ions on the Parker Solar Probe

The Solar Probe ANalyzer for Ions (SPAN-I) onboard NASA s Parker Solar Probe spacecraft is an electrostatic analyzer with time-of- flight capabilities that measures the ion composition and three- dimensional distribution function of the thermal corona and solar-wind plasma. SPAN-I measures the energy per charge of ions in the solar wind from 2 eV to 30 keV with a field of view of 247.\textdegree5 \texttimes 120\textdegree while simultaneously separating H$^+$ from He$^++$ to develop 3D velocity distribution functions of indi ...

Livi, Roberto; Larson, Davin; Kasper, Justin; Abiad, Robert; Case, A.~W.; Klein, Kristopher; Curtis, David; Dalton, Gregory; Stevens, Michael; Korreck, Kelly; Ho, George; Robinson, Miles; Tiu, Chris; Whittlesey, Phyllis; Verniero, Jaye; Halekas, Jasper; McFadden, James; Marckwordt, Mario; Slagle, Amanda; Abatcha, Mamuda; Rahmati, Ali; McManus, Michael;

Published by: \apj      Published on: oct

YEAR: 2022     DOI: 10.3847/1538-4357/ac93f5

Parker Data Used; Heliosphere; The Sun; Solar Physics; 711; 1693; 1476

The Solar Probe ANalyzer-Ions on the Parker Solar Probe

The Solar Probe ANalyzer for Ions (SPAN-I) onboard NASA s Parker Solar Probe spacecraft is an electrostatic analyzer with time-of- flight capabilities that measures the ion composition and three- dimensional distribution function of the thermal corona and solar-wind plasma. SPAN-I measures the energy per charge of ions in the solar wind from 2 eV to 30 keV with a field of view of 247.\textdegree5 \texttimes 120\textdegree while simultaneously separating H$^+$ from He$^++$ to develop 3D velocity distribution functions of indi ...

Livi, Roberto; Larson, Davin; Kasper, Justin; Abiad, Robert; Case, A.~W.; Klein, Kristopher; Curtis, David; Dalton, Gregory; Stevens, Michael; Korreck, Kelly; Ho, George; Robinson, Miles; Tiu, Chris; Whittlesey, Phyllis; Verniero, Jaye; Halekas, Jasper; McFadden, James; Marckwordt, Mario; Slagle, Amanda; Abatcha, Mamuda; Rahmati, Ali; McManus, Michael;

Published by: \apj      Published on: oct

YEAR: 2022     DOI: 10.3847/1538-4357/ac93f5

Parker Data Used; Heliosphere; The Sun; Solar Physics; 711; 1693; 1476

The Solar Probe ANalyzer-Ions on the Parker Solar Probe

The Solar Probe ANalyzer for Ions (SPAN-I) onboard NASA s Parker Solar Probe spacecraft is an electrostatic analyzer with time-of- flight capabilities that measures the ion composition and three- dimensional distribution function of the thermal corona and solar-wind plasma. SPAN-I measures the energy per charge of ions in the solar wind from 2 eV to 30 keV with a field of view of 247.\textdegree5 \texttimes 120\textdegree while simultaneously separating H$^+$ from He$^++$ to develop 3D velocity distribution functions of indi ...

Livi, Roberto; Larson, Davin; Kasper, Justin; Abiad, Robert; Case, A.~W.; Klein, Kristopher; Curtis, David; Dalton, Gregory; Stevens, Michael; Korreck, Kelly; Ho, George; Robinson, Miles; Tiu, Chris; Whittlesey, Phyllis; Verniero, Jaye; Halekas, Jasper; McFadden, James; Marckwordt, Mario; Slagle, Amanda; Abatcha, Mamuda; Rahmati, Ali; McManus, Michael;

Published by: \apj      Published on: oct

YEAR: 2022     DOI: 10.3847/1538-4357/ac93f5

Parker Data Used; Heliosphere; The Sun; Solar Physics; 711; 1693; 1476

Switchback deflections beyond the early parker solar probe encounters

Switchbacks are Aflv\ enic fluctuations in the solar wind, which exhibit large rotations in the magnetic field direction. Observations from Parker Solar Probe s (PSP s) first two solar encounters have formed the basis for many of the described switchback properties and generation mechanisms. However, this early data may not be representative of the typical near-Sun solar wind, biasing our current understanding of these phenomena. One defining switchback property is the magnetic deflection direction. During the first solar en ...

Laker, R.; Horbury, T.~S.; Matteini, L.; Bale, S.~D.; Stawarz, J.~E.; Woodham, L.~D.; Woolley, T.;

Published by: \mnras      Published on: nov

YEAR: 2022     DOI: 10.1093/mnras/stac2477

Parker Data Used; Sun: magnetic fields; Sun: heliosphere; Solar wind; Physics - Space Physics

Reconciling Parker Solar Probe Observations and Magnetohydrodynamic Theory

The Parker Solar Probe mission provides a unique opportunity to characterize several features of the solar wind at different heliocentric distances. Recent findings have shown a transition in the inertial range spectral and scaling properties around 0.4-0.5 au when moving away from the Sun. Here we provide, for the first time, how to reconcile these observational results on the radial evolution of the magnetic and velocity field fluctuations with two scenarios drawn from the magnetohydrodynamic theory. The observed breakdown ...

Alberti, Tommaso; Benella, Simone; Consolini, Giuseppe; Stumpo, Mirko; Benzi, Roberto;

Published by: \apjl      Published on: nov

YEAR: 2022     DOI: 10.3847/2041-8213/aca075

Parker Data Used; Solar wind; interplanetary turbulence; Magnetohydrodynamics; interplanetary magnetic fields; 1534; 830; 1964; 824; Astrophysics - Solar and Stellar Astrophysics; Nonlinear Sciences - Chaotic Dynamics; Physics - Plasma Physics; Physics - Space Physics

Observations of Quiescent Solar Wind Regions with Near-f $_ce$ Wave Activity

In situ measurements in the near-Sun solar wind from the Parker Solar Probe have revealed the existence of quiescent solar wind regions: extended regions of solar wind with low-amplitude turbulent magnetic field fluctuations compared to adjacent regions. Identified through the study of harmonic waves near the electron cyclotron frequency (f $_ce$), these quiescent regions are shown to host a variety of plasma waves. The near-f $_ce$ harmonic waves are observed exclusively in quiescent regions, and as such, they can be used a ...

Short, Benjamin; Malaspina, David; Halekas, Jasper; Romeo, Orlando; Verniero, J.~L.; Finley, Adam; Kasper, Justin; Rahmati, Ali; Bale, Stuart; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Goodrich, Katherine; Harvey, Peter; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

Published by: \apj      Published on: nov

YEAR: 2022     DOI: 10.3847/1538-4357/ac97e4

Parker Data Used; Solar wind; interplanetary turbulence; Space plasmas; Solar magnetic fields; Heliosphere; 1534; 830; 1544; 1503; 711

Nonlinear Interaction of a 3D Kinetic Alfv\ en Wave with a Null Point and Turbulence Generation in the Solar Corona

In the present paper, we have studied nonlinear kinetic Alfv\ en waves (KAWs) in the vicinity of a null point. We have considered the nonlinearity due to ponderomotive effects associated with KAWs in the solar corona. A 3D model equation representing the dynamics of KAWs is developed in this null point scenario. Using numerical methods, we have solved the model equation for solar coronal parameters. The pseudospectral method and the finite difference method have been applied to tackle spatial integration and temporal evaluat ...

Patel, G.; Pathak, N.; Uma, R.; Sharma, R.~P.;

Published by: \solphys      Published on: nov

YEAR: 2022     DOI: 10.1007/s11207-022-02083-5

Parker Data Used; Solar corona heating-Sun: corona- turbulence; Wave; Null points

A journey to touch the Sun

The Parker Solar Probe is braving extreme conditions to explore the mysterious solar corona, a region that harbors some of the most difficult-to-understand phenomena in astrophysics.

Raouafi, Nour;

Published by: Physics Today      Published on: nov

YEAR: 2022     DOI: 10.1063/PT.3.5120

Parker Data Used

Inconspicuous Solar Polar Coronal X-Ray Jets as the Source of Conspicuous Hinode/EUV Imaging Spectrometer Doppler Outflows

We examine in greater detail five events previously identified as being sources of strong transient coronal outflows in a solar polar region in Hinode/Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Doppler data. Although relatively compact or faint and inconspicuous in Hinode/X-ray Telescope (XRT) soft-X-ray (SXR) images and in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) EUV images, we find that all of these events are consistent with being faint coronal X-ray jets. The evidence for this is that ...

Sterling, Alphonse; Schwanitz, Conrad; Harra, Louise; Raouafi, Nour; Panesar, Navdeep; Moore, Ronald;

Published by: \apj      Published on: nov

YEAR: 2022     DOI: 10.3847/1538-4357/ac9960

Parker Data Used; Solar filament eruptions; Solar corona; Solar x-ray emission; Solar extreme ultraviolet emission; 1981; 1483; 1536; 1493; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Ion Kinetics of Plasma Flows: Earth s Magnetosheath versus Solar Wind

Revealing the formation, dynamics, and contribution to plasma heating of magnetic field fluctuations in the solar wind is an important task for heliospheric physics and for a general plasma turbulence theory. Spacecraft observations in the solar wind are limited to spatially localized measurements, so that the evolution of fluctuation properties with solar wind propagation is mostly studied via statistical analyses of data sets collected by different spacecraft at various radial distances from the Sun. In this study we inves ...

Artemyev, A.~V.; Shi, C.; Lin, Y.; Nishimura, Y.; Gonzalez, C.; Verniero, J.; Wang, X.; Velli, M.; Tenerani, A.; Sioulas, N.;

Published by: \apj      Published on: nov

YEAR: 2022     DOI: 10.3847/1538-4357/ac96e4

Parker Data Used; interplanetary turbulence; Solar wind; 830; 1534

Ion Kinetics of Plasma Flows: Earth s Magnetosheath versus Solar Wind

Revealing the formation, dynamics, and contribution to plasma heating of magnetic field fluctuations in the solar wind is an important task for heliospheric physics and for a general plasma turbulence theory. Spacecraft observations in the solar wind are limited to spatially localized measurements, so that the evolution of fluctuation properties with solar wind propagation is mostly studied via statistical analyses of data sets collected by different spacecraft at various radial distances from the Sun. In this study we inves ...

Artemyev, A.~V.; Shi, C.; Lin, Y.; Nishimura, Y.; Gonzalez, C.; Verniero, J.; Wang, X.; Velli, M.; Tenerani, A.; Sioulas, N.;

Published by: \apj      Published on: nov

YEAR: 2022     DOI: 10.3847/1538-4357/ac96e4

Parker Data Used; interplanetary turbulence; Solar wind; 830; 1534

Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November

We investigate the effects of the evolutionary processes in the internal magnetic structure of two interplanetary coronal mass ejections (ICMEs) detected in situ between 2020 November 29 and December 1 by the Parker Solar Probe (PSP). The sources of the ICMEs were observed remotely at the Sun in EUV and subsequently tracked to their coronal counterparts in white light. This period is of particular interest to the community as it has been identified as the first widespread solar energetic particle event of solar cycle 25. The ...

Nieves-Chinchilla, Teresa; Alzate, Nathalia; Cremades, Hebe; ia, Laura; Santos, Luiz; Narock, Ayris; Xie, Hong; Szabo, Adam; Palmerio, Erika; Krupar, Vratislav; Pulupa, Marc; Lario, David; Stevens, Michael; Wilson, Lynn; Kwon, Ryun-Young; Mays, Leila; St. Cyr, Chris; Hess, Phillip; Reeves, Katharine; Seaton, Daniel; Niembro, Tatiana; Bale, Stuart; Kasper, Justin;

Published by: \apj      Published on: may

YEAR: 2022     DOI: 10.3847/1538-4357/ac590b

Parker Data Used; Solar coronal mass ejections; Solar wind; Interplanetary physics; 310; 1534; 827; Astrophysics - Solar and Stellar Astrophysics

Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November

We investigate the effects of the evolutionary processes in the internal magnetic structure of two interplanetary coronal mass ejections (ICMEs) detected in situ between 2020 November 29 and December 1 by the Parker Solar Probe (PSP). The sources of the ICMEs were observed remotely at the Sun in EUV and subsequently tracked to their coronal counterparts in white light. This period is of particular interest to the community as it has been identified as the first widespread solar energetic particle event of solar cycle 25. The ...

Nieves-Chinchilla, Teresa; Alzate, Nathalia; Cremades, Hebe; ia, Laura; Santos, Luiz; Narock, Ayris; Xie, Hong; Szabo, Adam; Palmerio, Erika; Krupar, Vratislav; Pulupa, Marc; Lario, David; Stevens, Michael; Wilson, Lynn; Kwon, Ryun-Young; Mays, Leila; St. Cyr, Chris; Hess, Phillip; Reeves, Katharine; Seaton, Daniel; Niembro, Tatiana; Bale, Stuart; Kasper, Justin;

Published by: \apj      Published on: may

YEAR: 2022     DOI: 10.3847/1538-4357/ac590b

Parker Data Used; Solar coronal mass ejections; Solar wind; Interplanetary physics; 310; 1534; 827; Astrophysics - Solar and Stellar Astrophysics

CMEs and SEPs During November-December 2020: A Challenge for Real-Time Space Weather Forecasting

Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this w ...

Palmerio, Erika; Lee, Christina; Mays, Leila; Luhmann, Janet; Lario, David; anchez-Cano, Beatriz; Richardson, Ian; Vainio, Rami; Stevens, Michael; Cohen, Christina; Steinvall, Konrad; Möstl, Christian; Weiss, Andreas; Nieves-Chinchilla, Teresa; Li, Yan; Larson, Davin; Heyner, Daniel; Bale, Stuart; Galvin, Antoinette; Holmström, Mats; Khotyaintsev, Yuri; Maksimovic, Milan; Mitrofanov, Igor;

Published by: Space Weather      Published on: may

YEAR: 2022     DOI: 10.1029/2021SW002993

Parker Data Used; coronal mass ejections; Solar energetic particles; space weather forecasts; MHD models; Inner heliosphere; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics

Density Compressions at Magnetic Switchbacks Associated With Fast Plasma: A Superposed Epoch Analysis

Many magnetic field switchbacks were detected by the Parker Solar Probe and their origin remains a puzzle. We did a superposed epoch analysis (SEA) to investigate the plasma characteristics in the vicinity of switchbacks and their radial evolution. SEA is good way to get the statistical average features of certain types of events that have obvious boundaries and different durations. For 55 events ranging from 1 to 30 min, the SEA results show that a small parcel of plasma is piling up in front of the reversed field, and ...

Liu, Ruoyan; Liu, Yong; Huang, Jia; Huang, Zhaohui; Klecker, Berndt; Wang, Chi;

Published by: Journal of Geophysical Research (Space Physics)      Published on: may

YEAR: 2022     DOI: 10.1029/2022JA030382

Parker Data Used; Solar wind; magnetic fields; switchbacks

Density Compressions at Magnetic Switchbacks Associated With Fast Plasma: A Superposed Epoch Analysis

Many magnetic field switchbacks were detected by the Parker Solar Probe and their origin remains a puzzle. We did a superposed epoch analysis (SEA) to investigate the plasma characteristics in the vicinity of switchbacks and their radial evolution. SEA is good way to get the statistical average features of certain types of events that have obvious boundaries and different durations. For 55 events ranging from 1 to 30 min, the SEA results show that a small parcel of plasma is piling up in front of the reversed field, and ...

Liu, Ruoyan; Liu, Yong; Huang, Jia; Huang, Zhaohui; Klecker, Berndt; Wang, Chi;

Published by: Journal of Geophysical Research (Space Physics)      Published on: may

YEAR: 2022     DOI: 10.1029/2022JA030382

Parker Data Used; Solar wind; magnetic fields; switchbacks

Density Compressions at Magnetic Switchbacks Associated With Fast Plasma: A Superposed Epoch Analysis

Many magnetic field switchbacks were detected by the Parker Solar Probe and their origin remains a puzzle. We did a superposed epoch analysis (SEA) to investigate the plasma characteristics in the vicinity of switchbacks and their radial evolution. SEA is good way to get the statistical average features of certain types of events that have obvious boundaries and different durations. For 55 events ranging from 1 to 30 min, the SEA results show that a small parcel of plasma is piling up in front of the reversed field, and ...

Liu, Ruoyan; Liu, Yong; Huang, Jia; Huang, Zhaohui; Klecker, Berndt; Wang, Chi;

Published by: Journal of Geophysical Research (Space Physics)      Published on: may

YEAR: 2022     DOI: 10.1029/2022JA030382

Parker Data Used; Solar wind; magnetic fields; switchbacks

Density Compressions at Magnetic Switchbacks Associated With Fast Plasma: A Superposed Epoch Analysis

Many magnetic field switchbacks were detected by the Parker Solar Probe and their origin remains a puzzle. We did a superposed epoch analysis (SEA) to investigate the plasma characteristics in the vicinity of switchbacks and their radial evolution. SEA is good way to get the statistical average features of certain types of events that have obvious boundaries and different durations. For 55 events ranging from 1 to 30 min, the SEA results show that a small parcel of plasma is piling up in front of the reversed field, and ...

Liu, Ruoyan; Liu, Yong; Huang, Jia; Huang, Zhaohui; Klecker, Berndt; Wang, Chi;

Published by: Journal of Geophysical Research (Space Physics)      Published on: may

YEAR: 2022     DOI: 10.1029/2022JA030382

Parker Data Used; Solar wind; magnetic fields; switchbacks

The incompressible energy cascade rate in anisotropic solar wind turbulence

Context. The presence of a magnetic guide field induces several types of anisotropy in solar wind turbulence. The energy cascade rate between scales in the inertial range depends strongly on the direction of this magnetic guide field, splitting the energy cascade according to the parallel and perpendicular directions with respect to magnetic guide field. \ Aims: Using more than two years of Parker Solar Probe (PSP) observations, the isotropy and anisotropy energy cascade rates are investigated. The variance and normalized fl ...

es, Andr\; Sahraoui, F.; Huang, S.; Hadid, L.~Z.; Galtier, S.;

Published by: \aap      Published on: may

YEAR: 2022     DOI: 10.1051/0004-6361/202142994

Parker Data Used; turbulence; magnetohydrodynamics (MHD); plasmas; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics

The incompressible energy cascade rate in anisotropic solar wind turbulence

Context. The presence of a magnetic guide field induces several types of anisotropy in solar wind turbulence. The energy cascade rate between scales in the inertial range depends strongly on the direction of this magnetic guide field, splitting the energy cascade according to the parallel and perpendicular directions with respect to magnetic guide field. \ Aims: Using more than two years of Parker Solar Probe (PSP) observations, the isotropy and anisotropy energy cascade rates are investigated. The variance and normalized fl ...

es, Andr\; Sahraoui, F.; Huang, S.; Hadid, L.~Z.; Galtier, S.;

Published by: \aap      Published on: may

YEAR: 2022     DOI: 10.1051/0004-6361/202142994

Parker Data Used; turbulence; magnetohydrodynamics (MHD); plasmas; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics

Multi-scale image preprocessing and feature tracking for remote CME characterization

Coronal Mass Ejections (CMEs) influence the interplanetary environment over vast distances in the solar system by injecting huge clouds of fast solar plasma and energetic particles (SEPs). A number of fundamental questions remain about how SEPs are produced, but current understanding points to CME-driven shocks and compressions in the solar corona. At the same time, unprecedented remote and in situ (Parker Solar Probe, Solar Orbiter) solar observations are becoming available to constrain existing theories. Here we present a ...

Stepanyuk, Oleg; Kozarev, Kamen; Nedal, Mohamed;

Published by: Journal of Space Weather and Space Climate      Published on: may

YEAR: 2022     DOI: 10.1051/swsc/2022020

Parker Data Used; Coronal bright fronts; coronal mass ejections; image processing; eruptive filaments; CME; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Instrumentation and Methods for Astrophysics; Physics - Space Physics

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ...

Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.;

Published by: \grl      Published on: may

YEAR: 2022     DOI: 10.1029/2021GL096986

Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ...

Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.;

Published by: \grl      Published on: may

YEAR: 2022     DOI: 10.1029/2021GL096986

Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ...

Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.;

Published by: \grl      Published on: may

YEAR: 2022     DOI: 10.1029/2021GL096986

Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ...

Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.;

Published by: \grl      Published on: may

YEAR: 2022     DOI: 10.1029/2021GL096986

Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ...

Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.;

Published by: \grl      Published on: may

YEAR: 2022     DOI: 10.1029/2021GL096986

Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet

Eruption and Interplanetary Evolution of a Stealthy Streamer-Blowout CME Observed by PSP at \ensuremath\sim0.5 AU

Streamer-blowout coronal mass ejections (SBO-CMEs) are the dominant CME population during solar minimum. Although they are typically slow and lack clear low-coronal signatures, they can cause geomagnetic storms. With the aid of extrapolated coronal fields and remote observations of the off-limb low corona, we study the initiation of an SBO-CME preceded by consecutive CME eruptions consistent with a multi-stage sympathetic breakout scenario. From inner-heliospheric Parker Solar Probe (PSP) observations, it is evident that the ...

Pal, Sanchita; Lynch, Benjamin; Good, Simon; Palmerio, Erika; Asvestari, Eleanna; Pomoell, Jens; Stevens, Michael; Kilpua, Emilia;

Published by: Frontiers in Astronomy and Space Sciences      Published on: may

YEAR: 2022     DOI: 10.3389/fspas.2022.903676

Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Sudden depletion of Alfv\ enic turbulence in the rarefaction region of corotating solar wind high-speed streams at 1 AU: Possible solar origin?

A canonical description of a corotating solar wind high-speed stream in terms of velocity profile would indicate three main regions: a stream interface or corotating interaction region characterized by a rapid increase in flow speed and by compressive phenomena that are due to dynamical interaction between the fast wind flow and the slower ambient plasma; a fast wind plateau characterized by weak compressive phenomena and large-amplitude fluctuations with a dominant Alfv\ enic character; and a rarefaction region characterize ...

Carnevale, G.; Bruno, R.; Marino, R.; Pietropaolo, E.; Raines, J.~M.;

Published by: \aap      Published on: may

YEAR: 2022     DOI: 10.1051/0004-6361/202040006

turbulence; Sun: magnetic fields; Solar wind; magnetohydrodynamics (MHD); Sun: corona; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Intermittency in the Expanding Solar Wind: Observations from Parker Solar Probe (0.16 au), Helios 1 (0.3-1 au), and Voyager 1 (1-10 au)

We examine statistics of magnetic-field vector components to explore how intermittency evolves from near-Sun plasma to radial distances as large as 10 au. Statistics entering the analysis include autocorrelation, magnetic structure functions of the order of n (SF$_ n $), and scale-dependent kurtosis (SDK), each grouped in ranges of heliocentric distance. The Goddard Space Flight Center Space Physics Data Facility provides magnetic-field measurements for resolutions of 6.8 ms for Parker Solar Probe, 6 s for Helios, and 1.92 s ...

Cuesta, Manuel; Parashar, Tulasi; Chhiber, Rohit; Matthaeus, William;

Published by: \apjs      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4365/ac45fa

Parker Data Used; Solar wind; interplanetary magnetic fields; Space plasmas; interplanetary turbulence; Interplanetary physics; 1534; 824; 1544; 830; 827; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Intermittency in the Expanding Solar Wind: Observations from Parker Solar Probe (0.16 au), Helios 1 (0.3-1 au), and Voyager 1 (1-10 au)

We examine statistics of magnetic-field vector components to explore how intermittency evolves from near-Sun plasma to radial distances as large as 10 au. Statistics entering the analysis include autocorrelation, magnetic structure functions of the order of n (SF$_ n $), and scale-dependent kurtosis (SDK), each grouped in ranges of heliocentric distance. The Goddard Space Flight Center Space Physics Data Facility provides magnetic-field measurements for resolutions of 6.8 ms for Parker Solar Probe, 6 s for Helios, and 1.92 s ...

Cuesta, Manuel; Parashar, Tulasi; Chhiber, Rohit; Matthaeus, William;

Published by: \apjs      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4365/ac45fa

Parker Data Used; Solar wind; interplanetary magnetic fields; Space plasmas; interplanetary turbulence; Interplanetary physics; 1534; 824; 1544; 830; 827; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Relativistic Particle Transport and Acceleration in Structured Plasma Turbulence

We discuss the phenomenon of energization of relativistic charged particles in three-dimensional incompressible MHD turbulence and the diffusive properties of the motion of the same particles. We show that the random electric field induced by turbulent plasma motion leads test particles moving in a simulated box to be accelerated in a stochastic way, a second-order Fermi process. A small fraction of these particles happen to be trapped in large- scale structures, most likely formed due to the interaction of islands in the tu ...

Pezzi, Oreste; Blasi, Pasquale; Matthaeus, William;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac5332

Parker Data Used; Magnetohydrodynamics; cosmic rays; Particle astrophysics; 1964; 329; 96; Astrophysics - High Energy Astrophysical Phenomena; Physics - Plasma Physics

Statistical Analysis of Intermittency and its Association with Proton Heating in the Near-Sun Environment

We use data from the first six encounters of the Parker Solar Probe and employ the partial variance of increments (PVI) method to study the statistical properties of coherent structures in the inner heliosphere with the aim of exploring physical connections between magnetic field intermittency and observable consequences such as plasma heating and turbulence dissipation. Our results support proton heating localized in the vicinity of, and strongly correlated with, magnetic structures characterized by PVI \ensuremath\geq 1. W ...

Sioulas, Nikos; Velli, Marco; Chhiber, Rohit; Vlahos, Loukas; Matthaeus, William; Bandyopadhyay, Riddhi; Cuesta, Manuel; Shi, Chen; Bowen, Trevor; Qudsi, Ramiz; Stevens, Michael; Bale, Stuart;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4fc1

Parker Data Used; Solar wind; Space plasmas; Plasma astrophysics; 1534; 1544; 1261; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Statistical Analysis of Intermittency and its Association with Proton Heating in the Near-Sun Environment

We use data from the first six encounters of the Parker Solar Probe and employ the partial variance of increments (PVI) method to study the statistical properties of coherent structures in the inner heliosphere with the aim of exploring physical connections between magnetic field intermittency and observable consequences such as plasma heating and turbulence dissipation. Our results support proton heating localized in the vicinity of, and strongly correlated with, magnetic structures characterized by PVI \ensuremath\geq 1. W ...

Sioulas, Nikos; Velli, Marco; Chhiber, Rohit; Vlahos, Loukas; Matthaeus, William; Bandyopadhyay, Riddhi; Cuesta, Manuel; Shi, Chen; Bowen, Trevor; Qudsi, Ramiz; Stevens, Michael; Bale, Stuart;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4fc1

Parker Data Used; Solar wind; Space plasmas; Plasma astrophysics; 1534; 1544; 1261; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Statistical Analysis of Intermittency and its Association with Proton Heating in the Near-Sun Environment

We use data from the first six encounters of the Parker Solar Probe and employ the partial variance of increments (PVI) method to study the statistical properties of coherent structures in the inner heliosphere with the aim of exploring physical connections between magnetic field intermittency and observable consequences such as plasma heating and turbulence dissipation. Our results support proton heating localized in the vicinity of, and strongly correlated with, magnetic structures characterized by PVI \ensuremath\geq 1. W ...

Sioulas, Nikos; Velli, Marco; Chhiber, Rohit; Vlahos, Loukas; Matthaeus, William; Bandyopadhyay, Riddhi; Cuesta, Manuel; Shi, Chen; Bowen, Trevor; Qudsi, Ramiz; Stevens, Michael; Bale, Stuart;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4fc1

Parker Data Used; Solar wind; Space plasmas; Plasma astrophysics; 1534; 1544; 1261; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Statistical Analysis of Intermittency and its Association with Proton Heating in the Near-Sun Environment

We use data from the first six encounters of the Parker Solar Probe and employ the partial variance of increments (PVI) method to study the statistical properties of coherent structures in the inner heliosphere with the aim of exploring physical connections between magnetic field intermittency and observable consequences such as plasma heating and turbulence dissipation. Our results support proton heating localized in the vicinity of, and strongly correlated with, magnetic structures characterized by PVI \ensuremath\geq 1. W ...

Sioulas, Nikos; Velli, Marco; Chhiber, Rohit; Vlahos, Loukas; Matthaeus, William; Bandyopadhyay, Riddhi; Cuesta, Manuel; Shi, Chen; Bowen, Trevor; Qudsi, Ramiz; Stevens, Michael; Bale, Stuart;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4fc1

Parker Data Used; Solar wind; Space plasmas; Plasma astrophysics; 1534; 1544; 1261; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe

Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called plasma emission framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f $_ pe $ and/or its harmonic 2f $_ pe $. However, the details of the physics of mode conversion are unclear, and so far the ...

Larosa, A.; de Wit, Dudok; Krasnoselskikh, V.; Bale, S.~D.; Agapitov, O.; Bonnell, J.; Froment, C.; Goetz, K.; Harvey, P.; Halekas, J.; Kretzschmar, M.; MacDowall, R.; Malaspina, David; Moncuquet, M.; Niehof, J.; Pulupa, M.; Revillet, C.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4e85

Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544

Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe

Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called plasma emission framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f $_ pe $ and/or its harmonic 2f $_ pe $. However, the details of the physics of mode conversion are unclear, and so far the ...

Larosa, A.; de Wit, Dudok; Krasnoselskikh, V.; Bale, S.~D.; Agapitov, O.; Bonnell, J.; Froment, C.; Goetz, K.; Harvey, P.; Halekas, J.; Kretzschmar, M.; MacDowall, R.; Malaspina, David; Moncuquet, M.; Niehof, J.; Pulupa, M.; Revillet, C.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4e85

Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Flux rope and dynamics of the heliospheric current sheet. Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ...

Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142381

Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Flux rope and dynamics of the heliospheric current sheet. Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ...

Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142381

Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Flux rope and dynamics of the heliospheric current sheet. Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ...

Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142381

Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Flux rope and dynamics of the heliospheric current sheet. Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ...

Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142381

Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Flux rope and dynamics of the heliospheric current sheet. Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ...

Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142381

Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Flux rope and dynamics of the heliospheric current sheet. Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ...

Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142381

Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Flux rope and dynamics of the heliospheric current sheet. Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ...

Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142381

Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Flux rope and dynamics of the heliospheric current sheet. Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ...

Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142381

Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Analysis of the Distribution, Rotation and Scale Characteristics of Solar Wind Switchbacks: Comparison between the First and Second Encounters of Parker Solar Probe

The S-shaped magnetic structure in the solar wind formed by the twisting of magnetic field lines is called a switchback, whose main characteristics are the reversal of the magnetic field and the significant increase in the solar wind radial velocity. We identify 242 switchbacks during the first two encounters of Parker Solar Probe. Statistics methods are applied to analyze the distribution and the rotation angle and direction of the magnetic field rotation of the switchbacks. The diameter of switchbacks is estimated with a m ...

Meng, Ming-Ming; Liu, Ying; Chen, Chong; Wang, Rui;

Published by: Research in Astronomy and Astrophysics      Published on: mar

YEAR: 2022     DOI: 10.1088/1674-4527/ac49e4

Parker Data Used; ISM: magnetic fields; methods: statistical; (Sun:) solar wind; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics



  1      2      3      4      5      6