Notice:
|
Found 4157 entries in the Bibliography.
Showing entries from 51 through 100
2022 |
Continued PSP/WISPR Observations of a Phaethon-related Dust Trail We present an update to the first white-light detections of a dust trail observed closely following the orbit of asteroid (3200) Phaethon, as seen by the Wide-field Imager for the Parker Solar Probe instrument on the NASA Parker Solar Probe mission. Here, we provide a summary and analysis of observations of the dust trail over nine separate mission encounters between 2018 October and 2021 August that saw the spacecraft approach to within 0.0277 au of the orbit of Phaethon. We find the photometric and estimated dust mass prop ... Battams, Karl; Gutarra-Leon, Angel; Gallagher, Brendan; Knight, Matthew; Stenborg, Guillermo; Tanner, Sarah; Linton, Mark; Szalay, Jamey; Kelley, Michael; Howard, Russell; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac83b5 Parker Data Used; Asteroids; Meteoroid dust clouds; Near-Earth objects; Small Solar System bodies; 72; 1039; 1092; 1469; Astrophysics - Earth and Planetary Astrophysics |
Continued PSP/WISPR Observations of a Phaethon-related Dust Trail We present an update to the first white-light detections of a dust trail observed closely following the orbit of asteroid (3200) Phaethon, as seen by the Wide-field Imager for the Parker Solar Probe instrument on the NASA Parker Solar Probe mission. Here, we provide a summary and analysis of observations of the dust trail over nine separate mission encounters between 2018 October and 2021 August that saw the spacecraft approach to within 0.0277 au of the orbit of Phaethon. We find the photometric and estimated dust mass prop ... Battams, Karl; Gutarra-Leon, Angel; Gallagher, Brendan; Knight, Matthew; Stenborg, Guillermo; Tanner, Sarah; Linton, Mark; Szalay, Jamey; Kelley, Michael; Howard, Russell; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac83b5 Parker Data Used; Asteroids; Meteoroid dust clouds; Near-Earth objects; Small Solar System bodies; 72; 1039; 1092; 1469; Astrophysics - Earth and Planetary Astrophysics |
Continued PSP/WISPR Observations of a Phaethon-related Dust Trail We present an update to the first white-light detections of a dust trail observed closely following the orbit of asteroid (3200) Phaethon, as seen by the Wide-field Imager for the Parker Solar Probe instrument on the NASA Parker Solar Probe mission. Here, we provide a summary and analysis of observations of the dust trail over nine separate mission encounters between 2018 October and 2021 August that saw the spacecraft approach to within 0.0277 au of the orbit of Phaethon. We find the photometric and estimated dust mass prop ... Battams, Karl; Gutarra-Leon, Angel; Gallagher, Brendan; Knight, Matthew; Stenborg, Guillermo; Tanner, Sarah; Linton, Mark; Szalay, Jamey; Kelley, Michael; Howard, Russell; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac83b5 Parker Data Used; Asteroids; Meteoroid dust clouds; Near-Earth objects; Small Solar System bodies; 72; 1039; 1092; 1469; Astrophysics - Earth and Planetary Astrophysics |
Continued PSP/WISPR Observations of a Phaethon-related Dust Trail We present an update to the first white-light detections of a dust trail observed closely following the orbit of asteroid (3200) Phaethon, as seen by the Wide-field Imager for the Parker Solar Probe instrument on the NASA Parker Solar Probe mission. Here, we provide a summary and analysis of observations of the dust trail over nine separate mission encounters between 2018 October and 2021 August that saw the spacecraft approach to within 0.0277 au of the orbit of Phaethon. We find the photometric and estimated dust mass prop ... Battams, Karl; Gutarra-Leon, Angel; Gallagher, Brendan; Knight, Matthew; Stenborg, Guillermo; Tanner, Sarah; Linton, Mark; Szalay, Jamey; Kelley, Michael; Howard, Russell; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac83b5 Parker Data Used; Asteroids; Meteoroid dust clouds; Near-Earth objects; Small Solar System bodies; 72; 1039; 1092; 1469; Astrophysics - Earth and Planetary Astrophysics |
The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters We utilize observations from the Parker Solar Probe (PSP) to study the radial evolution of the solar wind in the inner heliosphere. We analyze electron velocity distribution functions observed by the Solar Wind Electrons, Alphas, and Protons suite to estimate the coronal electron temperature and the local electric potential in the solar wind. From the latter value and the local flow speed, we compute the asymptotic solar wind speed. We group the PSP observations by asymptotic speed, and characterize the radial evolution of t ... Halekas, J.~S.; Whittlesey, P.; Larson, D.~E.; Maksimovic, M.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac85b8 Parker Data Used; Solar wind; Slow solar wind; Fast solar wind; 1534; 1873; 1872; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters We utilize observations from the Parker Solar Probe (PSP) to study the radial evolution of the solar wind in the inner heliosphere. We analyze electron velocity distribution functions observed by the Solar Wind Electrons, Alphas, and Protons suite to estimate the coronal electron temperature and the local electric potential in the solar wind. From the latter value and the local flow speed, we compute the asymptotic solar wind speed. We group the PSP observations by asymptotic speed, and characterize the radial evolution of t ... Halekas, J.~S.; Whittlesey, P.; Larson, D.~E.; Maksimovic, M.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac85b8 Parker Data Used; Solar wind; Slow solar wind; Fast solar wind; 1534; 1873; 1872; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters We utilize observations from the Parker Solar Probe (PSP) to study the radial evolution of the solar wind in the inner heliosphere. We analyze electron velocity distribution functions observed by the Solar Wind Electrons, Alphas, and Protons suite to estimate the coronal electron temperature and the local electric potential in the solar wind. From the latter value and the local flow speed, we compute the asymptotic solar wind speed. We group the PSP observations by asymptotic speed, and characterize the radial evolution of t ... Halekas, J.~S.; Whittlesey, P.; Larson, D.~E.; Maksimovic, M.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac85b8 Parker Data Used; Solar wind; Slow solar wind; Fast solar wind; 1534; 1873; 1872; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters We utilize observations from the Parker Solar Probe (PSP) to study the radial evolution of the solar wind in the inner heliosphere. We analyze electron velocity distribution functions observed by the Solar Wind Electrons, Alphas, and Protons suite to estimate the coronal electron temperature and the local electric potential in the solar wind. From the latter value and the local flow speed, we compute the asymptotic solar wind speed. We group the PSP observations by asymptotic speed, and characterize the radial evolution of t ... Halekas, J.~S.; Whittlesey, P.; Larson, D.~E.; Maksimovic, M.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac85b8 Parker Data Used; Solar wind; Slow solar wind; Fast solar wind; 1534; 1873; 1872; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters We utilize observations from the Parker Solar Probe (PSP) to study the radial evolution of the solar wind in the inner heliosphere. We analyze electron velocity distribution functions observed by the Solar Wind Electrons, Alphas, and Protons suite to estimate the coronal electron temperature and the local electric potential in the solar wind. From the latter value and the local flow speed, we compute the asymptotic solar wind speed. We group the PSP observations by asymptotic speed, and characterize the radial evolution of t ... Halekas, J.~S.; Whittlesey, P.; Larson, D.~E.; Maksimovic, M.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac85b8 Parker Data Used; Solar wind; Slow solar wind; Fast solar wind; 1534; 1873; 1872; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters We utilize observations from the Parker Solar Probe (PSP) to study the radial evolution of the solar wind in the inner heliosphere. We analyze electron velocity distribution functions observed by the Solar Wind Electrons, Alphas, and Protons suite to estimate the coronal electron temperature and the local electric potential in the solar wind. From the latter value and the local flow speed, we compute the asymptotic solar wind speed. We group the PSP observations by asymptotic speed, and characterize the radial evolution of t ... Halekas, J.~S.; Whittlesey, P.; Larson, D.~E.; Maksimovic, M.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac85b8 Parker Data Used; Solar wind; Slow solar wind; Fast solar wind; 1534; 1873; 1872; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters We utilize observations from the Parker Solar Probe (PSP) to study the radial evolution of the solar wind in the inner heliosphere. We analyze electron velocity distribution functions observed by the Solar Wind Electrons, Alphas, and Protons suite to estimate the coronal electron temperature and the local electric potential in the solar wind. From the latter value and the local flow speed, we compute the asymptotic solar wind speed. We group the PSP observations by asymptotic speed, and characterize the radial evolution of t ... Halekas, J.~S.; Whittlesey, P.; Larson, D.~E.; Maksimovic, M.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac85b8 Parker Data Used; Solar wind; Slow solar wind; Fast solar wind; 1534; 1873; 1872; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The closest perihelion pass of Parker Solar Probe (PSP), so far, occurred between 2021 November 16 and 26 and reached \raisebox-0.5ex\textasciitilde13.29 R $_☉$ from Sun center. This pass resulted in very unique observations of the solar corona by the Wide-field Instrument for Solar PRobe (WISPR). WISPR observed at least 10 coronal mass ejections (CMEs), some of which were so close that the structures appear distorted. All of the CMEs appeared to have a magnetic flux rope (MFR) structure, and most were oriented such that t ... Howard, Russell; Stenborg, Guillermo; Vourlidas, Angelos; Gallagher, Brendan; Linton, Mark; Hess, Phillip; Rich, Nathan; Liewer, Paulett; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac7ff5 Parker Data Used; Solar coronal mass ejections; Solar wind; Solar K corona; Solar coronal streamers; 310; 1534; 2042; 1486; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics |
The closest perihelion pass of Parker Solar Probe (PSP), so far, occurred between 2021 November 16 and 26 and reached \raisebox-0.5ex\textasciitilde13.29 R $_☉$ from Sun center. This pass resulted in very unique observations of the solar corona by the Wide-field Instrument for Solar PRobe (WISPR). WISPR observed at least 10 coronal mass ejections (CMEs), some of which were so close that the structures appear distorted. All of the CMEs appeared to have a magnetic flux rope (MFR) structure, and most were oriented such that t ... Howard, Russell; Stenborg, Guillermo; Vourlidas, Angelos; Gallagher, Brendan; Linton, Mark; Hess, Phillip; Rich, Nathan; Liewer, Paulett; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac7ff5 Parker Data Used; Solar coronal mass ejections; Solar wind; Solar K corona; Solar coronal streamers; 310; 1534; 2042; 1486; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics |
The closest perihelion pass of Parker Solar Probe (PSP), so far, occurred between 2021 November 16 and 26 and reached \raisebox-0.5ex\textasciitilde13.29 R $_☉$ from Sun center. This pass resulted in very unique observations of the solar corona by the Wide-field Instrument for Solar PRobe (WISPR). WISPR observed at least 10 coronal mass ejections (CMEs), some of which were so close that the structures appear distorted. All of the CMEs appeared to have a magnetic flux rope (MFR) structure, and most were oriented such that t ... Howard, Russell; Stenborg, Guillermo; Vourlidas, Angelos; Gallagher, Brendan; Linton, Mark; Hess, Phillip; Rich, Nathan; Liewer, Paulett; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac7ff5 Parker Data Used; Solar coronal mass ejections; Solar wind; Solar K corona; Solar coronal streamers; 310; 1534; 2042; 1486; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics |
The closest perihelion pass of Parker Solar Probe (PSP), so far, occurred between 2021 November 16 and 26 and reached \raisebox-0.5ex\textasciitilde13.29 R $_☉$ from Sun center. This pass resulted in very unique observations of the solar corona by the Wide-field Instrument for Solar PRobe (WISPR). WISPR observed at least 10 coronal mass ejections (CMEs), some of which were so close that the structures appear distorted. All of the CMEs appeared to have a magnetic flux rope (MFR) structure, and most were oriented such that t ... Howard, Russell; Stenborg, Guillermo; Vourlidas, Angelos; Gallagher, Brendan; Linton, Mark; Hess, Phillip; Rich, Nathan; Liewer, Paulett; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac7ff5 Parker Data Used; Solar coronal mass ejections; Solar wind; Solar K corona; Solar coronal streamers; 310; 1534; 2042; 1486; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics |
Context. We investigated the plasma and magnetic field characteristics of the upstream regions of interplanetary coronal mass ejections (ICMEs) and their evolution as function of distance to the Sun in the inner heliosphere. Results are related both to the development of interplanetary shocks, sheath regions, and compressed solar wind plasma ahead of the magnetic ejecta (ME). \ Aims: From a sample of 45 ICMEs observed by Helios 1/2 and the Parker Solar Probe, we aim to identify four main density structures; namely shock, she ... Published by: \aap Published on: sep YEAR: 2022   DOI: 10.1051/0004-6361/202243291 Parker Data Used; Sun: coronal mass ejections (CMEs); Sun: heliosphere; solar-terrestrial relations; Solar wind; Sun: activity; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics |
Context. We investigated the plasma and magnetic field characteristics of the upstream regions of interplanetary coronal mass ejections (ICMEs) and their evolution as function of distance to the Sun in the inner heliosphere. Results are related both to the development of interplanetary shocks, sheath regions, and compressed solar wind plasma ahead of the magnetic ejecta (ME). \ Aims: From a sample of 45 ICMEs observed by Helios 1/2 and the Parker Solar Probe, we aim to identify four main density structures; namely shock, she ... Published by: \aap Published on: sep YEAR: 2022   DOI: 10.1051/0004-6361/202243291 Parker Data Used; Sun: coronal mass ejections (CMEs); Sun: heliosphere; solar-terrestrial relations; Solar wind; Sun: activity; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics |
Observations of the Solar F-Corona from Space Lamy, P.~L.; Gilardy, H.; Llebaria, A.; Published by: ßr Published on: sep YEAR: 2022   DOI: 10.1007/s11214-022-00918-y Parker Data Used; F-corona; Zodiacal light; Interplanetary dust; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics |
Galactic Cosmic-Ray Propagation in the Inner Heliosphere: Improved Force-field Model Li, Jung-Tsung; Beacom, John; Peter, Annika; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac8cf3 Parker Data Used; cosmic rays; Galactic cosmic rays; Gamma-ray astronomy; Gamma-ray observatories; Magnetohydrodynamics; Plasma astrophysics; Particle astrophysics; High energy astrophysics; Solar Physics; interplanetary turbulence; 329; 567; 628; 632; 1964; 1261; 96; 739; 1476; 830; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - High Energy Astrophysical Phenomena; High Energy Physics - Phenomenology; Physics - Plasma Physics; Physics - Space Physics |
Galactic Cosmic-Ray Propagation in the Inner Heliosphere: Improved Force-field Model Li, Jung-Tsung; Beacom, John; Peter, Annika; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac8cf3 Parker Data Used; cosmic rays; Galactic cosmic rays; Gamma-ray astronomy; Gamma-ray observatories; Magnetohydrodynamics; Plasma astrophysics; Particle astrophysics; High energy astrophysics; Solar Physics; interplanetary turbulence; 329; 567; 628; 632; 1964; 1261; 96; 739; 1476; 830; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - High Energy Astrophysical Phenomena; High Energy Physics - Phenomenology; Physics - Plasma Physics; Physics - Space Physics |
Wave emissions at frequencies near electron gyrofrequency harmonics are observed at small heliocentric distances below about 40 R $_\ensuremath\odot$ and are known to occur in regions with quiescent magnetic fields. We show the close connection of these waves to the large-scale properties of the magnetic field. Near electron gyrofrequency harmonic emissions occur only when the ambient magnetic field points to a narrow range of directions bounded by polar and azimuthal angular ranges in the RTN coordinate system of correspond ... Tigik, Sabrina; Vaivads, Andris; Malaspina, David; Bale, Stuart; Published by: \apj Published on: sep YEAR: 2022   DOI: 10.3847/1538-4357/ac8473 Parker Data Used; Space plasmas; Plasma physics; Solar wind; 1544; 2089; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The heliospheric ambipolar potential inferred from sunward-propagating halo electrons We provide evidence that the sunward-propagating half of the solar wind electron halo distribution evolves without scattering in the inner heliosphere. We assume the particles conserve their total energy and magnetic moment, and perform a Liouville mapping on electron pitch angle distributions measured by the Parker Solar Probe SPAN-E instrument. Namely, we show that the distributions are consistent with Liouville s theorem if an appropriate interplanetary potential is chosen. This potential, an outcome of our fitting meth ... Horaites, Konstantinos; Boldyrev, Stanislav; Published by: \mnras Published on: oct YEAR: 2022   DOI: 10.1093/mnras/stac2051 Parker Data Used; plasmas; Solar wind; Physics - Space Physics |
The heliospheric ambipolar potential inferred from sunward-propagating halo electrons We provide evidence that the sunward-propagating half of the solar wind electron halo distribution evolves without scattering in the inner heliosphere. We assume the particles conserve their total energy and magnetic moment, and perform a Liouville mapping on electron pitch angle distributions measured by the Parker Solar Probe SPAN-E instrument. Namely, we show that the distributions are consistent with Liouville s theorem if an appropriate interplanetary potential is chosen. This potential, an outcome of our fitting meth ... Horaites, Konstantinos; Boldyrev, Stanislav; Published by: \mnras Published on: oct YEAR: 2022   DOI: 10.1093/mnras/stac2051 Parker Data Used; plasmas; Solar wind; Physics - Space Physics |
Coronal Mass Ejection Deformation at 0.1 au Observed by WISPR Although coronal mass ejections (CMEs) resembling flux ropes generally expand self-similarly, deformations along their fronts have been reported in observations and simulations. We present evidence of one CME becoming deformed after a period of self-similar expansion in the corona. The event was observed by multiple white-light imagers on 2021 January 20-22. The change in shape is evident in observations from the heliospheric imagers from the Wide-Field Imager for Solar Probe Plus (WISPR), which observed this CME for \raiseb ... Braga, Carlos; Vourlidas, Angelos; Liewer, Paulett; Hess, Phillip; Stenborg, Guillermo; Riley, Pete; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac90bf Parker Data Used; Solar coronal mass ejections; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Coronal Mass Ejection Deformation at 0.1 au Observed by WISPR Although coronal mass ejections (CMEs) resembling flux ropes generally expand self-similarly, deformations along their fronts have been reported in observations and simulations. We present evidence of one CME becoming deformed after a period of self-similar expansion in the corona. The event was observed by multiple white-light imagers on 2021 January 20-22. The change in shape is evident in observations from the heliospheric imagers from the Wide-Field Imager for Solar Probe Plus (WISPR), which observed this CME for \raiseb ... Braga, Carlos; Vourlidas, Angelos; Liewer, Paulett; Hess, Phillip; Stenborg, Guillermo; Riley, Pete; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac90bf Parker Data Used; Solar coronal mass ejections; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Coronal Mass Ejection Deformation at 0.1 au Observed by WISPR Although coronal mass ejections (CMEs) resembling flux ropes generally expand self-similarly, deformations along their fronts have been reported in observations and simulations. We present evidence of one CME becoming deformed after a period of self-similar expansion in the corona. The event was observed by multiple white-light imagers on 2021 January 20-22. The change in shape is evident in observations from the heliospheric imagers from the Wide-Field Imager for Solar Probe Plus (WISPR), which observed this CME for \raiseb ... Braga, Carlos; Vourlidas, Angelos; Liewer, Paulett; Hess, Phillip; Stenborg, Guillermo; Riley, Pete; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac90bf Parker Data Used; Solar coronal mass ejections; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Coronal Mass Ejection Deformation at 0.1 au Observed by WISPR Although coronal mass ejections (CMEs) resembling flux ropes generally expand self-similarly, deformations along their fronts have been reported in observations and simulations. We present evidence of one CME becoming deformed after a period of self-similar expansion in the corona. The event was observed by multiple white-light imagers on 2021 January 20-22. The change in shape is evident in observations from the heliospheric imagers from the Wide-Field Imager for Solar Probe Plus (WISPR), which observed this CME for \raiseb ... Braga, Carlos; Vourlidas, Angelos; Liewer, Paulett; Hess, Phillip; Stenborg, Guillermo; Riley, Pete; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac90bf Parker Data Used; Solar coronal mass ejections; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Modeling of Joint Parker Solar Probe-Metis/Solar Orbiter Observations We present the first theoretical modeling of joint Parker Solar Probe (PSP)-Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5-6.3 R $_\ensuremath\odot$) to the very inner heliosphere (23.2 R $_\ensuremath\odot$). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s$^-1$, and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s$ ... Adhikari, L.; Zank, G.~P.; Telloni, D.; Zhao, L.; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac91c6 Parker Data Used; The Sun; Solar wind; interplanetary turbulence; 1693; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Exact laws for evaluating cascade rates, tracing back to the Kolmogorov 4/5 law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom) relations is most effectively accomplished by examining the von K\ arm\ an-Howarth equati ... Wang, Yanwen; Chhiber, Rohit; Adhikari, Subash; Yang, Yan; Bandyopadhyay, Riddhi; Shay, Michael; Oughton, Sean; Matthaeus, William; Cuesta, Manuel; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac8f90 Parker Data Used; interplanetary turbulence; Space plasmas; Plasma physics; Magnetohydrodynamics; Magnetohydrodynamical simulations; 830; 1544; 2089; 1964; 1966; Physics - Space Physics; Physics - Fluid Dynamics; Physics - Plasma Physics |
Exact laws for evaluating cascade rates, tracing back to the Kolmogorov 4/5 law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom) relations is most effectively accomplished by examining the von K\ arm\ an-Howarth equati ... Wang, Yanwen; Chhiber, Rohit; Adhikari, Subash; Yang, Yan; Bandyopadhyay, Riddhi; Shay, Michael; Oughton, Sean; Matthaeus, William; Cuesta, Manuel; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac8f90 Parker Data Used; interplanetary turbulence; Space plasmas; Plasma physics; Magnetohydrodynamics; Magnetohydrodynamical simulations; 830; 1544; 2089; 1964; 1966; Physics - Space Physics; Physics - Fluid Dynamics; Physics - Plasma Physics |
Exact laws for evaluating cascade rates, tracing back to the Kolmogorov 4/5 law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom) relations is most effectively accomplished by examining the von K\ arm\ an-Howarth equati ... Wang, Yanwen; Chhiber, Rohit; Adhikari, Subash; Yang, Yan; Bandyopadhyay, Riddhi; Shay, Michael; Oughton, Sean; Matthaeus, William; Cuesta, Manuel; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac8f90 Parker Data Used; interplanetary turbulence; Space plasmas; Plasma physics; Magnetohydrodynamics; Magnetohydrodynamical simulations; 830; 1544; 2089; 1964; 1966; Physics - Space Physics; Physics - Fluid Dynamics; Physics - Plasma Physics |
Higher-order Turbulence Statistics in the Sub-Alfv\ enic Solar Wind Observed by Parker Solar Probe Parker Solar Probe has been the first spacecraft to enter the deep corona below the Alfv\ en critical point. Here we examine the higher-order statistical properties of magnetic-field fluctuations in the sub-Alfv\ enic solar wind and compare the results with the neighboring super-Alfv\ enic region. The intermittency and multifractal properties are analyzed by inspecting the probability density functions, the scale- dependent kurtosis, and fractal spectrum of magnetic-field fluctuations. It is found that the magnetic-field flu ... Zhang, J.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Xu, S.~B.; Bandyopadhyay, R.; Wei, Y.~Y.; Xiong, Q.~Y.; Wang, Z.; Yu, L.; Lin, R.~T.; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac8c34 Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830 |
In Situ Signature of Cyclotron Resonant Heating in the Solar Wind Bowen, Trevor; Chandran, Benjamin; Squire, Jonathan; Bale, Stuart; Duan, Die; Klein, Kristopher; Larson, Davin; Mallet, Alfred; McManus, Michael; Meyrand, Romain; Verniero, Jaye; Woodham, Lloyd; Published by: \prl Published on: oct YEAR: 2022   DOI: 10.1103/PhysRevLett.129.165101 |
In Situ Signature of Cyclotron Resonant Heating in the Solar Wind Bowen, Trevor; Chandran, Benjamin; Squire, Jonathan; Bale, Stuart; Duan, Die; Klein, Kristopher; Larson, Davin; Mallet, Alfred; McManus, Michael; Meyrand, Romain; Verniero, Jaye; Woodham, Lloyd; Published by: \prl Published on: oct YEAR: 2022   DOI: 10.1103/PhysRevLett.129.165101 |
In Situ Signature of Cyclotron Resonant Heating in the Solar Wind Bowen, Trevor; Chandran, Benjamin; Squire, Jonathan; Bale, Stuart; Duan, Die; Klein, Kristopher; Larson, Davin; Mallet, Alfred; McManus, Michael; Meyrand, Romain; Verniero, Jaye; Woodham, Lloyd; Published by: \prl Published on: oct YEAR: 2022   DOI: 10.1103/PhysRevLett.129.165101 |
In Situ Signature of Cyclotron Resonant Heating in the Solar Wind Bowen, Trevor; Chandran, Benjamin; Squire, Jonathan; Bale, Stuart; Duan, Die; Klein, Kristopher; Larson, Davin; Mallet, Alfred; McManus, Michael; Meyrand, Romain; Verniero, Jaye; Woodham, Lloyd; Published by: \prl Published on: oct YEAR: 2022   DOI: 10.1103/PhysRevLett.129.165101 |
In Situ Signature of Cyclotron Resonant Heating in the Solar Wind Bowen, Trevor; Chandran, Benjamin; Squire, Jonathan; Bale, Stuart; Duan, Die; Klein, Kristopher; Larson, Davin; Mallet, Alfred; McManus, Michael; Meyrand, Romain; Verniero, Jaye; Woodham, Lloyd; Published by: \prl Published on: oct YEAR: 2022   DOI: 10.1103/PhysRevLett.129.165101 |
In Situ Signature of Cyclotron Resonant Heating in the Solar Wind Bowen, Trevor; Chandran, Benjamin; Squire, Jonathan; Bale, Stuart; Duan, Die; Klein, Kristopher; Larson, Davin; Mallet, Alfred; McManus, Michael; Meyrand, Romain; Verniero, Jaye; Woodham, Lloyd; Published by: \prl Published on: oct YEAR: 2022   DOI: 10.1103/PhysRevLett.129.165101 |
In Situ Signature of Cyclotron Resonant Heating in the Solar Wind Bowen, Trevor; Chandran, Benjamin; Squire, Jonathan; Bale, Stuart; Duan, Die; Klein, Kristopher; Larson, Davin; Mallet, Alfred; McManus, Michael; Meyrand, Romain; Verniero, Jaye; Woodham, Lloyd; Published by: \prl Published on: oct YEAR: 2022   DOI: 10.1103/PhysRevLett.129.165101 |
Zhao, Jinsong; Malaspina, David; de Wit, Dudok; Pierrard, Viviane; Voitenko, Yuriy; Lapenta, Giovanni; Poedts, Stefaan; Bale, Stuart; Kasper, Justin; Larson, Davin; Livi, Roberto; Whittlesey, Phyllis; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac92e3 Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544 |
Zhao, Jinsong; Malaspina, David; de Wit, Dudok; Pierrard, Viviane; Voitenko, Yuriy; Lapenta, Giovanni; Poedts, Stefaan; Bale, Stuart; Kasper, Justin; Larson, Davin; Livi, Roberto; Whittlesey, Phyllis; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac92e3 Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544 |
Zhao, Jinsong; Malaspina, David; de Wit, Dudok; Pierrard, Viviane; Voitenko, Yuriy; Lapenta, Giovanni; Poedts, Stefaan; Bale, Stuart; Kasper, Justin; Larson, Davin; Livi, Roberto; Whittlesey, Phyllis; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac92e3 Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544 |
Zhao, Jinsong; Malaspina, David; de Wit, Dudok; Pierrard, Viviane; Voitenko, Yuriy; Lapenta, Giovanni; Poedts, Stefaan; Bale, Stuart; Kasper, Justin; Larson, Davin; Livi, Roberto; Whittlesey, Phyllis; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac92e3 Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544 |
Zhao, Jinsong; Malaspina, David; de Wit, Dudok; Pierrard, Viviane; Voitenko, Yuriy; Lapenta, Giovanni; Poedts, Stefaan; Bale, Stuart; Kasper, Justin; Larson, Davin; Livi, Roberto; Whittlesey, Phyllis; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac92e3 Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544 |
Zhao, Jinsong; Malaspina, David; de Wit, Dudok; Pierrard, Viviane; Voitenko, Yuriy; Lapenta, Giovanni; Poedts, Stefaan; Bale, Stuart; Kasper, Justin; Larson, Davin; Livi, Roberto; Whittlesey, Phyllis; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac92e3 Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544 |
Zhao, Jinsong; Malaspina, David; de Wit, Dudok; Pierrard, Viviane; Voitenko, Yuriy; Lapenta, Giovanni; Poedts, Stefaan; Bale, Stuart; Kasper, Justin; Larson, Davin; Livi, Roberto; Whittlesey, Phyllis; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac92e3 Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544 |
Zhao, Jinsong; Malaspina, David; de Wit, Dudok; Pierrard, Viviane; Voitenko, Yuriy; Lapenta, Giovanni; Poedts, Stefaan; Bale, Stuart; Kasper, Justin; Larson, Davin; Livi, Roberto; Whittlesey, Phyllis; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac92e3 Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544 |
Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere Telloni, Daniele; Adhikari, Laxman; Zank, Gary; Hadid, Lina; anchez-Cano, Beatriz; Sorriso-Valvo, Luca; Zhao, Lingling; Panasenco, Olga; Shi, Chen; Velli, Marco; Susino, Roberto; Verscharen, Daniel; Milillo, Anna; Alberti, Tommaso; Narita, Yasuhito; Verdini, Andrea; Grimani, Catia; Bruno, Roberto; Amicis, Raffaella; Perrone, Denise; Marino, Raffaele; Carbone, Francesco; Califano, Francesco; Malara, Francesco; Stawarz, Julia; Laker, Ronan; Liberatore, Alessandro; Bale, Stuart; Kasper, Justin; Heyner, Daniel; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Auster, Hans-Ulrich; Richter, Ingo; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac9624 Parker Data Used; Magnetohydrodynamics; Alfven waves; Space plasmas; interplanetary turbulence; Heliosphere; Solar wind; 1964; 23; 1544; 830; 711; 1534 |
Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere Telloni, Daniele; Adhikari, Laxman; Zank, Gary; Hadid, Lina; anchez-Cano, Beatriz; Sorriso-Valvo, Luca; Zhao, Lingling; Panasenco, Olga; Shi, Chen; Velli, Marco; Susino, Roberto; Verscharen, Daniel; Milillo, Anna; Alberti, Tommaso; Narita, Yasuhito; Verdini, Andrea; Grimani, Catia; Bruno, Roberto; Amicis, Raffaella; Perrone, Denise; Marino, Raffaele; Carbone, Francesco; Califano, Francesco; Malara, Francesco; Stawarz, Julia; Laker, Ronan; Liberatore, Alessandro; Bale, Stuart; Kasper, Justin; Heyner, Daniel; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Auster, Hans-Ulrich; Richter, Ingo; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac9624 Parker Data Used; Magnetohydrodynamics; Alfven waves; Space plasmas; interplanetary turbulence; Heliosphere; Solar wind; 1964; 23; 1544; 830; 711; 1534 |
Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere Telloni, Daniele; Adhikari, Laxman; Zank, Gary; Hadid, Lina; anchez-Cano, Beatriz; Sorriso-Valvo, Luca; Zhao, Lingling; Panasenco, Olga; Shi, Chen; Velli, Marco; Susino, Roberto; Verscharen, Daniel; Milillo, Anna; Alberti, Tommaso; Narita, Yasuhito; Verdini, Andrea; Grimani, Catia; Bruno, Roberto; Amicis, Raffaella; Perrone, Denise; Marino, Raffaele; Carbone, Francesco; Califano, Francesco; Malara, Francesco; Stawarz, Julia; Laker, Ronan; Liberatore, Alessandro; Bale, Stuart; Kasper, Justin; Heyner, Daniel; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Auster, Hans-Ulrich; Richter, Ingo; Published by: \apjl Published on: oct YEAR: 2022   DOI: 10.3847/2041-8213/ac9624 Parker Data Used; Magnetohydrodynamics; Alfven waves; Space plasmas; interplanetary turbulence; Heliosphere; Solar wind; 1964; 23; 1544; 830; 711; 1534 |