PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 804 entries in the Bibliography.


Showing entries from 51 through 100


2022

CMEs and SEPs During November-December 2020: A Challenge for Real-Time Space Weather Forecasting

Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this w ...

Palmerio, Erika; Lee, Christina; Mays, Leila; Luhmann, Janet; Lario, David; anchez-Cano, Beatriz; Richardson, Ian; Vainio, Rami; Stevens, Michael; Cohen, Christina; Steinvall, Konrad; Möstl, Christian; Weiss, Andreas; Nieves-Chinchilla, Teresa; Li, Yan; Larson, Davin; Heyner, Daniel; Bale, Stuart; Galvin, Antoinette; Holmström, Mats; Khotyaintsev, Yuri; Maksimovic, Milan; Mitrofanov, Igor;

Published by: Space Weather      Published on: may

YEAR: 2022     DOI: 10.1029/2021SW002993

Parker Data Used; coronal mass ejections; Solar energetic particles; space weather forecasts; MHD models; Inner heliosphere; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics

CMEs and SEPs During November-December 2020: A Challenge for Real-Time Space Weather Forecasting

Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this w ...

Palmerio, Erika; Lee, Christina; Mays, Leila; Luhmann, Janet; Lario, David; anchez-Cano, Beatriz; Richardson, Ian; Vainio, Rami; Stevens, Michael; Cohen, Christina; Steinvall, Konrad; Möstl, Christian; Weiss, Andreas; Nieves-Chinchilla, Teresa; Li, Yan; Larson, Davin; Heyner, Daniel; Bale, Stuart; Galvin, Antoinette; Holmström, Mats; Khotyaintsev, Yuri; Maksimovic, Milan; Mitrofanov, Igor;

Published by: Space Weather      Published on: may

YEAR: 2022     DOI: 10.1029/2021SW002993

Parker Data Used; coronal mass ejections; Solar energetic particles; space weather forecasts; MHD models; Inner heliosphere; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics

CMEs and SEPs During November-December 2020: A Challenge for Real-Time Space Weather Forecasting

Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this w ...

Palmerio, Erika; Lee, Christina; Mays, Leila; Luhmann, Janet; Lario, David; anchez-Cano, Beatriz; Richardson, Ian; Vainio, Rami; Stevens, Michael; Cohen, Christina; Steinvall, Konrad; Möstl, Christian; Weiss, Andreas; Nieves-Chinchilla, Teresa; Li, Yan; Larson, Davin; Heyner, Daniel; Bale, Stuart; Galvin, Antoinette; Holmström, Mats; Khotyaintsev, Yuri; Maksimovic, Milan; Mitrofanov, Igor;

Published by: Space Weather      Published on: may

YEAR: 2022     DOI: 10.1029/2021SW002993

Parker Data Used; coronal mass ejections; Solar energetic particles; space weather forecasts; MHD models; Inner heliosphere; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics

The incompressible energy cascade rate in anisotropic solar wind turbulence

Context. The presence of a magnetic guide field induces several types of anisotropy in solar wind turbulence. The energy cascade rate between scales in the inertial range depends strongly on the direction of this magnetic guide field, splitting the energy cascade according to the parallel and perpendicular directions with respect to magnetic guide field. \ Aims: Using more than two years of Parker Solar Probe (PSP) observations, the isotropy and anisotropy energy cascade rates are investigated. The variance and normalized fl ...

es, Andr\; Sahraoui, F.; Huang, S.; Hadid, L.~Z.; Galtier, S.;

Published by: \aap      Published on: may

YEAR: 2022     DOI: 10.1051/0004-6361/202142994

Parker Data Used; turbulence; magnetohydrodynamics (MHD); plasmas; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ...

Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.;

Published by: \grl      Published on: may

YEAR: 2022     DOI: 10.1029/2021GL096986

Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ...

Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.;

Published by: \grl      Published on: may

YEAR: 2022     DOI: 10.1029/2021GL096986

Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ...

Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.;

Published by: \grl      Published on: may

YEAR: 2022     DOI: 10.1029/2021GL096986

Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet

Eruption and Interplanetary Evolution of a Stealthy Streamer-Blowout CME Observed by PSP at \ensuremath\sim0.5 AU

Streamer-blowout coronal mass ejections (SBO-CMEs) are the dominant CME population during solar minimum. Although they are typically slow and lack clear low-coronal signatures, they can cause geomagnetic storms. With the aid of extrapolated coronal fields and remote observations of the off-limb low corona, we study the initiation of an SBO-CME preceded by consecutive CME eruptions consistent with a multi-stage sympathetic breakout scenario. From inner-heliospheric Parker Solar Probe (PSP) observations, it is evident that the ...

Pal, Sanchita; Lynch, Benjamin; Good, Simon; Palmerio, Erika; Asvestari, Eleanna; Pomoell, Jens; Stevens, Michael; Kilpua, Emilia;

Published by: Frontiers in Astronomy and Space Sciences      Published on: may

YEAR: 2022     DOI: 10.3389/fspas.2022.903676

Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Sudden depletion of Alfv\ enic turbulence in the rarefaction region of corotating solar wind high-speed streams at 1 AU: Possible solar origin?

A canonical description of a corotating solar wind high-speed stream in terms of velocity profile would indicate three main regions: a stream interface or corotating interaction region characterized by a rapid increase in flow speed and by compressive phenomena that are due to dynamical interaction between the fast wind flow and the slower ambient plasma; a fast wind plateau characterized by weak compressive phenomena and large-amplitude fluctuations with a dominant Alfv\ enic character; and a rarefaction region characterize ...

Carnevale, G.; Bruno, R.; Marino, R.; Pietropaolo, E.; Raines, J.~M.;

Published by: \aap      Published on: may

YEAR: 2022     DOI: 10.1051/0004-6361/202040006

turbulence; Sun: magnetic fields; Solar wind; magnetohydrodynamics (MHD); Sun: corona; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Core Electron Heating by Triggered Ion Acoustic Waves in the Solar Wind

Perihelion passes on Parker Solar Probe orbits 6-9 have been studied to show that solar wind core electrons emerged from 15 solar radii with a temperature of 55 \ensuremath\pm 5 eV, independent of the solar wind speed, which varied from 300 to 800 km s$^-1$. After leaving 15 solar radii and in the absence of triggered ion acoustic waves at greater distances, the core electron temperature varied with radial distance, R, in solar radii, as 1900R $^-4/3$ eV because of cooling produced by the adiabatic expansion. The coefficient ...

Mozer, F.~S.; Bale, S.~D.; Cattell, C.~A.; Halekas, J.; Vasko, I.~Y.; Verniero, J.~L.; Kellogg, P.~J.;

Published by: \apjl      Published on: mar

YEAR: 2022     DOI: 10.3847/2041-8213/ac5520

Parker Data Used; Solar corona; Solar wind; 1483; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Core Electron Heating by Triggered Ion Acoustic Waves in the Solar Wind

Perihelion passes on Parker Solar Probe orbits 6-9 have been studied to show that solar wind core electrons emerged from 15 solar radii with a temperature of 55 \ensuremath\pm 5 eV, independent of the solar wind speed, which varied from 300 to 800 km s$^-1$. After leaving 15 solar radii and in the absence of triggered ion acoustic waves at greater distances, the core electron temperature varied with radial distance, R, in solar radii, as 1900R $^-4/3$ eV because of cooling produced by the adiabatic expansion. The coefficient ...

Mozer, F.~S.; Bale, S.~D.; Cattell, C.~A.; Halekas, J.; Vasko, I.~Y.; Verniero, J.~L.; Kellogg, P.~J.;

Published by: \apjl      Published on: mar

YEAR: 2022     DOI: 10.3847/2041-8213/ac5520

Parker Data Used; Solar corona; Solar wind; 1483; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Statistical Analysis of Intermittency and its Association with Proton Heating in the Near-Sun Environment

We use data from the first six encounters of the Parker Solar Probe and employ the partial variance of increments (PVI) method to study the statistical properties of coherent structures in the inner heliosphere with the aim of exploring physical connections between magnetic field intermittency and observable consequences such as plasma heating and turbulence dissipation. Our results support proton heating localized in the vicinity of, and strongly correlated with, magnetic structures characterized by PVI \ensuremath\geq 1. W ...

Sioulas, Nikos; Velli, Marco; Chhiber, Rohit; Vlahos, Loukas; Matthaeus, William; Bandyopadhyay, Riddhi; Cuesta, Manuel; Shi, Chen; Bowen, Trevor; Qudsi, Ramiz; Stevens, Michael; Bale, Stuart;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4fc1

Parker Data Used; Solar wind; Space plasmas; Plasma astrophysics; 1534; 1544; 1261; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe

Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called plasma emission framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f $_ pe $ and/or its harmonic 2f $_ pe $. However, the details of the physics of mode conversion are unclear, and so far the ...

Larosa, A.; de Wit, Dudok; Krasnoselskikh, V.; Bale, S.~D.; Agapitov, O.; Bonnell, J.; Froment, C.; Goetz, K.; Harvey, P.; Halekas, J.; Kretzschmar, M.; MacDowall, R.; Malaspina, David; Moncuquet, M.; Niehof, J.; Pulupa, M.; Revillet, C.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4e85

Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544

Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe

Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called plasma emission framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f $_ pe $ and/or its harmonic 2f $_ pe $. However, the details of the physics of mode conversion are unclear, and so far the ...

Larosa, A.; de Wit, Dudok; Krasnoselskikh, V.; Bale, S.~D.; Agapitov, O.; Bonnell, J.; Froment, C.; Goetz, K.; Harvey, P.; Halekas, J.; Kretzschmar, M.; MacDowall, R.; Malaspina, David; Moncuquet, M.; Niehof, J.; Pulupa, M.; Revillet, C.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4e85

Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544

Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe

Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called plasma emission framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f $_ pe $ and/or its harmonic 2f $_ pe $. However, the details of the physics of mode conversion are unclear, and so far the ...

Larosa, A.; de Wit, Dudok; Krasnoselskikh, V.; Bale, S.~D.; Agapitov, O.; Bonnell, J.; Froment, C.; Goetz, K.; Harvey, P.; Halekas, J.; Kretzschmar, M.; MacDowall, R.; Malaspina, David; Moncuquet, M.; Niehof, J.; Pulupa, M.; Revillet, C.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4e85

Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544

Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe

Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called plasma emission framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f $_ pe $ and/or its harmonic 2f $_ pe $. However, the details of the physics of mode conversion are unclear, and so far the ...

Larosa, A.; de Wit, Dudok; Krasnoselskikh, V.; Bale, S.~D.; Agapitov, O.; Bonnell, J.; Froment, C.; Goetz, K.; Harvey, P.; Halekas, J.; Kretzschmar, M.; MacDowall, R.; Malaspina, David; Moncuquet, M.; Niehof, J.; Pulupa, M.; Revillet, C.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4e85

Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Erratum: The Role of Alfv\ en Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 data (2020, ApJS, 246, 24)

eville, Victor; Velli, Marco; Panasenco, Olga; Tenerani, Anna; Shi, Chen; Badman, Samuel; Bale, Stuart; Kasper, J.~C.; Stevens, Michael; Korreck, Kelly; Bonnell, J.~W.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Larson, Davin; Livi, Roberto; Malaspina, David; MacDowall, Robert; Pulupa, Marc; Whittlesey, Phyllis;

Published by: \apjs      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4365/ac532e

Parker Data Used

Erratum: The Role of Alfv\ en Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 data (2020, ApJS, 246, 24)

eville, Victor; Velli, Marco; Panasenco, Olga; Tenerani, Anna; Shi, Chen; Badman, Samuel; Bale, Stuart; Kasper, J.~C.; Stevens, Michael; Korreck, Kelly; Bonnell, J.~W.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Larson, Davin; Livi, Roberto; Malaspina, David; MacDowall, Robert; Pulupa, Marc; Whittlesey, Phyllis;

Published by: \apjs      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4365/ac532e

Parker Data Used

Erratum: The Role of Alfv\ en Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 data (2020, ApJS, 246, 24)

eville, Victor; Velli, Marco; Panasenco, Olga; Tenerani, Anna; Shi, Chen; Badman, Samuel; Bale, Stuart; Kasper, J.~C.; Stevens, Michael; Korreck, Kelly; Bonnell, J.~W.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Larson, Davin; Livi, Roberto; Malaspina, David; MacDowall, Robert; Pulupa, Marc; Whittlesey, Phyllis;

Published by: \apjs      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4365/ac532e

Parker Data Used

In Situ Measurement of the Energy Fraction in Suprathermal and Energetic Particles at ACE, Wind, and PSP Interplanetary Shocks

The acceleration of charged particles by interplanetary shocks (IPs) can drain a nonnegligible fraction of the plasma pressure. In this study, we have selected 17 IPs observed in situ at 1 au by the Advanced Composition Explorer and the Wind spacecraft, and 1 shock at 0.8 au observed by Parker Solar Probe. We have calculated the time-dependent partial pressure of suprathermal and energetic particles (smaller and greater than 50 keV for protons and 30 keV for electrons, respectively) in both the upstream and downstream region ...

David, Liam; Fraschetti, Federico; Giacalone, Joe; Wimmer-Schweingruber, Robert; Berger, Lars; Lario, David;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac54af

Parker Data Used; Interplanetary shocks; Interplanetary particle acceleration; Space plasmas; 829; 826; 1544; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - High Energy Astrophysical Phenomena; Physics - Plasma Physics; Physics - Space Physics

Energy Transfer, Discontinuities, and Heating in the Inner Heliosphere Measured with a Weak and Local Formulation of the Politano-Pouquet Law

The solar wind is a highly turbulent plasma for which the mean rate of energy transfer ɛ has been measured for a long time using the Politano-Pouquet (PP98) exact law. However, this law assumes statistical homogeneity that can be violated by the presence of discontinuities. Here, we introduce a new method based on the inertial dissipation $ D _I^{\sigma }$ whose analytical form is derived from incompressible magnetohydrodynamics; it can be considered as a weak and local (in space) formulation of the PP98 law whose expressio ...

David, V.; Galtier, S.; Sahraoui, F.; Hadid, L.~Z.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac524b

Parker Data Used; interplanetary turbulence; Space plasmas; Solar wind; 830; 1544; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Using the Sun to Measure the Primary Beam Response of the Canadian Hydrogen Intensity Mapping Experiment

Amiri, Mandana; Bandura, Kevin; Boskovic, Anja; Cliche, Jean-Fran\ccois; Deng, Meiling; Dobbs, Matt; Fandino, Mateus; Foreman, Simon; Halpern, Mark; Hill, Alex; Hinshaw, Gary; Höfer, Carolin; Kania, Joseph; Landecker, T.~L.; MacEachern, Joshua; Masui, Kiyoshi; Mena-Parra, Juan; Newburgh, Laura; Ordog, Anna; Pinsonneault-Marotte, Tristan; Polzin, Ava; Reda, Alex; Shaw, Richard; Siegel, Seth; Singh, Saurabh; Vanderlinde, Keith; Wang, Haochen; Willis, James; Wulf, Dallas; Collaboration, CHIME;

Published by: \apj      Published on: jun

YEAR: 2022     DOI: 10.3847/1538-4357/ac6b9f

Parker Data Used; Radio telescopes; Interferometers; Calibration; Quiet Sun; 1360; 805; 2179; 1322; Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Cosmology and Nongalactic Astrophysics

Discrepancy between the Low-frequency Cutoffs of Type III Radio Bursts Based on Simultaneous Observations by WIND and PSP

The cutoff frequency is an important characteristic parameter of type III radio bursts. Employing the radio data of the Parker Solar Probe (PSP) in the encounter phases of its first five orbits, our previous work revealed that the maximum probability distribution of the cutoff frequency f $_ lo $ (\raisebox-0.5ex\textasciitilde680 kHz) is remarkably higher than that based on Ulysses and WIND (\raisebox-0.5ex\textasciitilde100 kHz) investigated by Leblanc et al. and Dulk et al. However, the main influencing factor of the disc ...

Ma, Bing; Chen, Ling; Wu, Dejin; Pulupa, Marc; Bale, Stuart;

Published by: \apjl      Published on: jun

YEAR: 2022     DOI: 10.3847/2041-8213/ac7525

Parker Data Used; Galaxy dynamics; Interplanetary physics; 591; 827

Features of Magnetic Field Switchbacks in Relation to the Local-field Geometry of Large-amplitude Alfv\ enic Oscillations: Wind and PSP Observations

In this Letter, we report observations of magnetic switchback (SB) features near 1 au using data from the Wind spacecraft. These features appear to be strikingly similar to the ones observed by the Parker Solar Probe mission closer to the Sun: namely, one- sided spikes (or enhancements) in the solar-wind bulk speed V that correlate/anticorrelate with the spikes seen in the radial- field component B $_ R $. In the solar-wind streams that we analyzed, these specific SB features near 1 au are associated with large-amplitude Alf ...

Bourouaine, Sofiane; Perez, Jean; Raouafi, Nour; Chandran, Benjamin; Bale, Stuart; Velli, Marco;

Published by: \apjl      Published on: jun

YEAR: 2022     DOI: 10.3847/2041-8213/ac67d9

Parker Data Used; Heliosphere; Solar wind; 711; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

PSP/WISPR Observations of Dust Density Depletion near the Sun. II. New Insights from within the Depletion Zone

Visible light observations from the Wide-field Imager for Solar PRobe (WISPR) aboard the Parker Solar Probe (PSP) mission offer a unique opportunity to study the dust environment near the Sun. The existence of a dust-free zone (DFZ) around stars was postulated almost a century ago. Despite numerous attempts to detect it from as close as 0.3 au, observational evidence of a circumsolar DFZ has remained elusive. Analysis of WISPR images obtained from heliocentric distances between 13.3-53.7 R $_\ensuremath\odot$ over multiple P ...

Stenborg, Guillermo; Howard, Russell; Vourlidas, Angelos; Gallagher, Brendan;

Published by: \apj      Published on: jun

YEAR: 2022     DOI: 10.3847/1538-4357/ac6b36

Parker Data Used; Circumstellar dust; Solar F corona; 236; 1991

The Effect of the Fluctuating Interplanetary Magnetic Field on the Cosmic Ray Intensity Profile of the Ground-level Enhancement (GLE) Events

We numerically integrate the equations of motion of a large number of GeV protons, released impulsively near the Sun, in order to study their time-intensity behavior at the location of an observer at 1 au. This is relevant to the interpretation of Ground Level Enhancements (GLEs) detected by neutron monitors on Earth. Generally, the observed time-intensity profiles reveal a single sharp rise, followed by slow decay. However, in the 1989 October 22 GLE event, there was an initial sharp spike followed by a secondary smaller sp ...

Moradi, Ashraf; Giacalone, Joe;

Published by: \apj      Published on: jun

YEAR: 2022     DOI: 10.3847/1538-4357/ac66e0

Parker Data Used; Solar energetic particles; interplanetary magnetic fields; interplanetary turbulence; solar flares; Solar coronal mass ejections; Solar coronal mass ejection shocks; 1491; 824; 830; 1496; 310; 1997

Contrasting Scaling Properties of Near-Sun Sub-Alfv\ enic and Super-Alfv\ enic Regions

Scale-invariance has rapidly established itself as one of the most used concepts in space plasmas to uncover underlying physical mechanisms via the scaling-law behavior of the statistical properties of field fluctuations. In this work, we characterize the scaling properties of the magnetic field fluctuations in a sub-alfv\ enic region in contrast with those of the nearby super-alfv\ enic zone during the ninth Parker Solar Probe perihelion. With our observations, (i) evidence of an extended self-similarity (ESS) for both the ...

Alberti, Tommaso; Benella, Simone; Carbone, Vincenzo; Consolini, Giuseppe; Quattrociocchi, Virgilio; Stumpo, Mirko;

Published by: Universe      Published on: jun

YEAR: 2022     DOI: 10.3390/universe8070338

Parker Data Used

Constraining Global Coronal Models with Multiple Independent Observables

Global coronal models seek to produce an accurate physical representation of the Sun s atmosphere that can be used, for example, to drive space-weather models. Assessing their accuracy is a complex task, and there are multiple observational pathways to provide constraints and tune model parameters. Here, we combine several such independent constraints, defining a model- agnostic framework for standardized comparison. We require models to predict the distribution of coronal holes at the photosphere, and neutral line topology ...

Badman, Samuel; Brooks, David; Poirier, Nicolas; Warren, Harry; Petrie, Gordon; Rouillard, Alexis; Arge, Nick; Bale, Stuart; Agüero, Diego; Harra, Louise; Jones, Shaela; Kouloumvakos, Athanasios; Riley, Pete; Panasenco, Olga; Velli, Marco; Wallace, Samantha;

Published by: \apj      Published on: jun

YEAR: 2022     DOI: 10.3847/1538-4357/ac6610

Parker Data Used; Solar Physics; Solar corona; Solar coronal holes; Astronomical models; 1476; 1483; 1484; 86; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Constraining Global Coronal Models with Multiple Independent Observables

Global coronal models seek to produce an accurate physical representation of the Sun s atmosphere that can be used, for example, to drive space-weather models. Assessing their accuracy is a complex task, and there are multiple observational pathways to provide constraints and tune model parameters. Here, we combine several such independent constraints, defining a model- agnostic framework for standardized comparison. We require models to predict the distribution of coronal holes at the photosphere, and neutral line topology ...

Badman, Samuel; Brooks, David; Poirier, Nicolas; Warren, Harry; Petrie, Gordon; Rouillard, Alexis; Arge, Nick; Bale, Stuart; Agüero, Diego; Harra, Louise; Jones, Shaela; Kouloumvakos, Athanasios; Riley, Pete; Panasenco, Olga; Velli, Marco; Wallace, Samantha;

Published by: \apj      Published on: jun

YEAR: 2022     DOI: 10.3847/1538-4357/ac6610

Parker Data Used; Solar Physics; Solar corona; Solar coronal holes; Astronomical models; 1476; 1483; 1484; 86; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Influence of Large-scale Interplanetary Structures on the Propagation of Solar Energetic Particles: The Multispacecraft Event on 2021 October 9

An intense solar energetic particle (SEP) event was observed on 2021 October 9 by multiple spacecraft distributed near the ecliptic plane at heliocentric radial distances R \ensuremath\lesssim 1 au and within a narrow range of heliolongitudes. A stream interaction region (SIR), sequentially observed by Parker Solar Probe (PSP) at R = 0.76 au and 48\textdegree east from Earth (\ensuremath\phi = E48\textdegree), STEREO-A (at R = 0.96 au, \ensuremath\phi = E39\textdegree), Solar Orbiter (SolO; at R = 0.68 au, \ensuremath\phi = ...

Lario, D.; Wijsen, N.; Kwon, R.~Y.; anchez-Cano, B.; Richardson, I.~G.; Pacheco, D.; Palmerio, E.; Stevens, M.~L.; Szabo, A.; Heyner, D.; Dresing, N.; omez-Herrero, R.; Carcaboso, F.; Aran, A.; Afanasiev, A.; Vainio, R.; Riihonen, E.; Poedts, S.; Brüden, M.; Xu, Z.~G.; Kollhoff, A.;

Published by: \apj      Published on: jul

YEAR: 2022     DOI: 10.3847/1538-4357/ac6efd

Parker Data Used; Corotating streams; Solar energetic particles; Solar coronal mass ejection shocks; 314; 1491; 1997

First Measurements of Jovian Electrons by Parker Solar Probe/IS\ensuremath\odotIS within 0.5 au of the Sun

Energetic electrons of Jovian origin have been observed for decades throughout the heliosphere, as far as 11 au, and as close as 0.5 au, from the Sun. The treatment of Jupiter as a continuously emitting point source of energetic electrons has made Jovian electrons a valuable tool in the study of energetic electron transport within the heliosphere. We present observations of Jovian electrons measured by the EPI-Hi instrument in the Integrated Science Investigation of the Sun instrument suite on Parker Solar Probe at distances ...

Mitchell, J.~G.; Leske, R.~A.; De Nolfo, G.~A.; Christian, E.~R.; Wiedenbeck, M.~E.; McComas, D.~J.; Cohen, C.~M.~S.; Cummings, A.~C.; Hill, M.~E.; Labrador, A.~W.; Mays, M.~L.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, D.~G.; Odstrcil, D.; Schwadron, N.~A.; Stone, E.~C.; Szalay, J.~R.;

Published by: \apj      Published on: jul

YEAR: 2022     DOI: 10.3847/1538-4357/ac75ce

Parker Data Used; Interplanetary particle acceleration; Solar energetic particles; Corotating streams; interplanetary magnetic fields; Heliosphere; 826; 1491; 314; 824; 711

First Measurements of Jovian Electrons by Parker Solar Probe/IS\ensuremath\odotIS within 0.5 au of the Sun

Energetic electrons of Jovian origin have been observed for decades throughout the heliosphere, as far as 11 au, and as close as 0.5 au, from the Sun. The treatment of Jupiter as a continuously emitting point source of energetic electrons has made Jovian electrons a valuable tool in the study of energetic electron transport within the heliosphere. We present observations of Jovian electrons measured by the EPI-Hi instrument in the Integrated Science Investigation of the Sun instrument suite on Parker Solar Probe at distances ...

Mitchell, J.~G.; Leske, R.~A.; De Nolfo, G.~A.; Christian, E.~R.; Wiedenbeck, M.~E.; McComas, D.~J.; Cohen, C.~M.~S.; Cummings, A.~C.; Hill, M.~E.; Labrador, A.~W.; Mays, M.~L.; McNutt, R.~L.; Mewaldt, R.~A.; Mitchell, D.~G.; Odstrcil, D.; Schwadron, N.~A.; Stone, E.~C.; Szalay, J.~R.;

Published by: \apj      Published on: jul

YEAR: 2022     DOI: 10.3847/1538-4357/ac75ce

Parker Data Used; Interplanetary particle acceleration; Solar energetic particles; Corotating streams; interplanetary magnetic fields; Heliosphere; 826; 1491; 314; 824; 711

On the Transmission of Turbulent Structures across the Earth s Bow Shock

Collisionless shocks and plasma turbulence are crucial ingredients for a broad range of astrophysical systems. The shock-turbulence interaction, and in particular the transmission of fully developed turbulence across the quasi-perpendicular Earth s bow shock, is here addressed using a combination of spacecraft observations and local numerical simulations. An alignment between the Wind (upstream) and Magnetospheric Multiscale (downstream) spacecraft is used to study the transmission of turbulent structures across the shock, r ...

Trotta, Domenico; Pecora, Francesco; Settino, Adriana; Perrone, Denise; Hietala, Heli; Horbury, Timothy; Matthaeus, William; Burgess, David; Servidio, Sergio; Valentini, Francesco;

Published by: \apj      Published on: jul

YEAR: 2022     DOI: 10.3847/1538-4357/ac7798

Parker Data Used; Shocks; Space plasmas; interplanetary turbulence; 2086; 1544; 830; Physics - Space Physics

On the Transmission of Turbulent Structures across the Earth s Bow Shock

Collisionless shocks and plasma turbulence are crucial ingredients for a broad range of astrophysical systems. The shock-turbulence interaction, and in particular the transmission of fully developed turbulence across the quasi-perpendicular Earth s bow shock, is here addressed using a combination of spacecraft observations and local numerical simulations. An alignment between the Wind (upstream) and Magnetospheric Multiscale (downstream) spacecraft is used to study the transmission of turbulent structures across the shock, r ...

Trotta, Domenico; Pecora, Francesco; Settino, Adriana; Perrone, Denise; Hietala, Heli; Horbury, Timothy; Matthaeus, William; Burgess, David; Servidio, Sergio; Valentini, Francesco;

Published by: \apj      Published on: jul

YEAR: 2022     DOI: 10.3847/1538-4357/ac7798

Parker Data Used; Shocks; Space plasmas; interplanetary turbulence; 2086; 1544; 830; Physics - Space Physics

The preferential orientation of magnetic switchbacks and its implications for solar magnetic flux transport

Context. Magnetic switchbacks in the solar wind are large deflections of the magnetic field vector, which often reverse their radial component, and are associated with a velocity spike consistent with their Alfv\ enic nature. The Parker Solar Probe (PSP) mission revealed them to be a dominant feature of the near-Sun solar wind. Where and how they are formed remains unclear and subject to discussion. \ Aims: We investigate the orientation of the magnetic field deflections in switchbacks to determine if they are characterized ...

Fargette, Na; Lavraud, Benoit; Rouillard, Alexis; eville, Victor; Bale, Stuart; Kasper, Justin;

Published by: \aap      Published on: jul

YEAR: 2022     DOI: 10.1051/0004-6361/202243537

Parker Data Used; Solar wind; Sun: magnetic fields; Sun: corona; Sun: photosphere; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Structure and fluctuations of a slow ICME sheath observed at 0.5 au by the Parker Solar Probe

Context. Sheath regions ahead of interplanetary coronal mass ejections (ICMEs) are compressed and turbulent global heliospheric structures. Their global and fine-scale structure are outstanding research problems, and only a few studies have been conducted on this topic closer to the Sun than 1 au. Comprehensive knowledge of the sheath structure and embedded fluctuations and of their evolution in interplanetary space is important for understanding their geoeffectiveness, their role in accelerating charged particles to high en ...

Kilpua, E.~K.~J.; Good, S.~W.; Ala-Lahti, M.; Osmane, A.; Pal, S.; Soljento, J.~E.; Zhao, L.~L.; Bale, S.;

Published by: \aap      Published on: jul

YEAR: 2022     DOI: 10.1051/0004-6361/202142191

Parker Data Used; Solar wind; Sun: coronal mass ejections (CMEs); shock waves; turbulence; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Structure and fluctuations of a slow ICME sheath observed at 0.5 au by the Parker Solar Probe

Context. Sheath regions ahead of interplanetary coronal mass ejections (ICMEs) are compressed and turbulent global heliospheric structures. Their global and fine-scale structure are outstanding research problems, and only a few studies have been conducted on this topic closer to the Sun than 1 au. Comprehensive knowledge of the sheath structure and embedded fluctuations and of their evolution in interplanetary space is important for understanding their geoeffectiveness, their role in accelerating charged particles to high en ...

Kilpua, E.~K.~J.; Good, S.~W.; Ala-Lahti, M.; Osmane, A.; Pal, S.; Soljento, J.~E.; Zhao, L.~L.; Bale, S.;

Published by: \aap      Published on: jul

YEAR: 2022     DOI: 10.1051/0004-6361/202142191

Parker Data Used; Solar wind; Sun: coronal mass ejections (CMEs); shock waves; turbulence; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

On the properties of Alfv\ enic switchbacks in the expanding solar wind: Three-dimensional numerical simulations

Switchbacks-abrupt reversals of the magnetic field within the solar wind-have been ubiquitously observed by Parker Solar Probe (PSP). Their origin, whether from processes near the solar surface or within the solar wind itself, remains under debate and likely has key implications for solar wind heating and acceleration. Here, using three-dimensional expanding box simulations, we examine the properties of switchbacks arising from the evolution of outwards-propagating Alfv\ en waves in the expanding solar wind in detail. Our go ...

Johnston, Zade; Squire, Jonathan; Mallet, Alfred; Meyrand, Romain;

Published by: Physics of Plasmas      Published on: jul

YEAR: 2022     DOI: 10.1063/5.0097983

Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

An\ alisis cinem\ atico de una eyecci\ on coronal de masa de 10 a 46 radios solares

Di Lorenzo, L.; Balmaceda, L.~A.; Cremades, H.;

Published by: Boletin de la Asociacion Argentina de Astronomia La Plata Argentina      Published on: jul

YEAR: 2022     DOI:

Parker Data Used; Sun: coronal mass ejections (CMEs); Sun: corona; Sun: heliosphere; solar-terrestrial relations

Density and Velocity Fluctuations of Alpha Particles in Magnetic Switchbacks

McManus, Michael; Verniero, Jaye; Bale, Stuart; Bowen, Trevor; Larson, Davin; Kasper, Justin; Livi, Roberto; Matteini, Lorenzo; Rahmati, Ali; Romeo, Orlando; Whittlesey, Phyllis; Woolley, Thomas;

Published by: \apj      Published on: jul

YEAR: 2022     DOI: 10.3847/1538-4357/ac6ba3

Parker Data Used; Heliosphere; Solar wind; Space plasmas; 711; 1534; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Multipoint Interplanetary Coronal Mass Ejections Observed with Solar Orbiter, BepiColombo, Parker Solar Probe, Wind, and STEREO-A

We report the result of the first search for multipoint in situ and imaging observations of interplanetary coronal mass ejections (ICMEs) starting with the first Solar Orbiter (SolO) data in 2020 April-2021 April. A data exploration analysis is performed including visualizations of the magnetic-field and plasma observations made by the five spacecraft SolO, BepiColombo, Parker Solar Probe (PSP), Wind, and STEREO-A, in connection with coronagraph and heliospheric imaging observations from STEREO-A/SECCHI and SOHO/LASCO. We id ...

Möstl, Christian; Weiss, Andreas; Reiss, Martin; Amerstorfer, Tanja; Bailey, Rachel; Hinterreiter, Jürgen; Bauer, Maike; Barnes, David; Davies, Jackie; Harrison, Richard; von Forstner, Johan; Davies, Emma; Heyner, Daniel; Horbury, Tim; Bale, Stuart;

Published by: \apjl      Published on: jan

YEAR: 2022     DOI: 10.3847/2041-8213/ac42d0

Parker Data Used; 310; 1526; 1534; 1476; 827; 824; 829; 711; 2037; 1472; 1528; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Variable Ion Compositions of Solar Energetic Particle Events in the Inner Heliosphere: A Field Line Braiding Model with Compound Injections

We propose a model for interpreting highly variable ion composition ratios in solar energetic particle (SEP) events recently observed by the Parker Solar Probe (PSP) at 0.3-0.45 au. We use numerical simulations to calculate SEP propagation in a turbulent interplanetary magnetic field with a Kolmogorov power spectrum from large scales down to the gyration scale of energetic particles. We show that when the source regions of different species are offset by a distance comparable to the size of the source regions, the observed e ...

Guo, Fan; Zhao, Lulu; Cohen, Christina; Giacalone, Joe; Leske, R.~A.; Wiedenbeck, M.~E.; Kahler, S.~W.; Li, Xiaocan; Zhang, Qile; Ho, George; Desai, Mihir;

Published by: \apj      Published on: jan

YEAR: 2022     DOI: 10.3847/1538-4357/ac3233

Parker Data Used; 1491; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Clouds of Spacecraft Debris Liberated by Hypervelocity Dust Impacts on Parker Solar Probe

Hypervelocity impacts on spacecraft surfaces produce a wide range of effects including transient plasma clouds, surface material ablation, and for some impacts, the liberation of spacecraft material as debris clouds. This study examines debris-producing impacts on the Parker Solar Probe spacecraft as it traverses the densest part of the zodiacal cloud: the inner heliosphere. Hypervelocity impacts by interplanetary dust grains on the spacecraft that produce debris clouds are identified and examined. Impact-generated plasma an ...

Malaspina, David; Stenborg, Guillermo; Mehoke, Doug; Al-Ghazwi, Adel; Shen, Mitchell; Hsu, Hsiang-Wen; Iyer, Kaushik; Bale, Stuart; de Wit, Thierry;

Published by: \apj      Published on: jan

YEAR: 2022     DOI: 10.3847/1538-4357/ac3bbb

Parker Data Used; 1845; 821; 1549; 1542; 1544

Clouds of Spacecraft Debris Liberated by Hypervelocity Dust Impacts on Parker Solar Probe

Hypervelocity impacts on spacecraft surfaces produce a wide range of effects including transient plasma clouds, surface material ablation, and for some impacts, the liberation of spacecraft material as debris clouds. This study examines debris-producing impacts on the Parker Solar Probe spacecraft as it traverses the densest part of the zodiacal cloud: the inner heliosphere. Hypervelocity impacts by interplanetary dust grains on the spacecraft that produce debris clouds are identified and examined. Impact-generated plasma an ...

Malaspina, David; Stenborg, Guillermo; Mehoke, Doug; Al-Ghazwi, Adel; Shen, Mitchell; Hsu, Hsiang-Wen; Iyer, Kaushik; Bale, Stuart; de Wit, Thierry;

Published by: \apj      Published on: jan

YEAR: 2022     DOI: 10.3847/1538-4357/ac3bbb

Parker Data Used; 1845; 821; 1549; 1542; 1544



  1      2      3      4      5      6