Notice:
|
Found 101 entries in the Bibliography.
Showing entries from 51 through 100
2020 |
Editorial: Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era Solar Wind 15 brought together almost 250 experts from all continents of the world to discuss the current trends and future perspectives of the research on the Sun and its solar wind. The present article collection recaptures some of the highlights of their contributions. Lapenta, Giovanni; Zhukov, Andrei; van Driel-Gesztelyi, Lidia; Published by: Solar Physics Published on: 07/2020 YEAR: 2020   DOI: 10.1007/s11207-020-01670-8 Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind |
The nature of the plasma wave modes around the ion kinetic scales in highly Alfv\ enic slow solar wind turbulence is investigated using data from the NASA\textquoterights Parker Solar Probe taken in the inner heliosphere, at 0.18 au from the Sun. The joint distribution of the normalized reduced magnetic helicity σm (θRB, τ) is obtained, where θRB is the angle between the local mean magnetic field and the radial direction and τ is the temporal scale. Two populations around ion scales a ... Huang, S; Zhang, J.; Sahraoui, F.; He, J.; Yuan, Z.; es, Andr\; Hadid, L.; Deng, X.; Jiang, K.; Yu, L.; Xiong, Q; Wei, Y; Xu, S.; Bale, S.; Kasper, J.; Published by: The Astrophysical Journal Published on: 07/2020 YEAR: 2020   DOI: 10.3847/2041-8213/ab9abb 1261; 1534; 1544; 1693; 1873; 23; 711; 824; 830; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus |
Effects of Radial Distances on Small-scale Magnetic Flux Ropes in the Solar Wind Small-scale magnetic flux ropes (SFRs) in the solar wind have been studied for decades. Statistical analysis utilizing various in situ spacecraft measurements is the main observational approach to investigating the generation and evolution of these small-scale structures. Based on the Grad-Shafranov reconstruction technique, we use the automated detection algorithm to build the databases of these small-scale structures via various spacecraft measurements at different heliocentric distances. We present the SFR properties, ... Published by: The Astrophysical Journal Published on: 05/2020 YEAR: 2020   DOI: 10.3847/1538-4357/ab8294 Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus |
We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe\textquoterights (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Su ... Lavraud, B.; Fargette, N.; Réville, V.; Szabo, A.; Huang, J.; Rouillard, A.; Viall, N.; Phan, T.; Kasper, J.; Bale, S.; Berthomier, M.; Bonnell, J.; Case, A.; de Wit, Dudok; Eastwood, J.; enot, V.; Goetz, K.; Griton, L.; Halekas, J.; Harvey, P.; Kieokaew, R.; Klein, K.; Korreck, K.; Kouloumvakos, A.; Larson, D.; Lavarra, M.; Livi, R.; Louarn, P.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Nieves-Chinchilla, T.; Pinto, R.; Poirier, N.; Pulupa, M.; Raouafi, N.; Stevens, M.; Toledo-Redondo, S.; Whittlesey, P.; Published by: The Astrophysical Journal Published on: 05/2020 YEAR: 2020   DOI: 10.3847/2041-8213/ab8d2d |
The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind Stochastic heating (SH) is a nonlinear heating mechanism driven by the violation of magnetic moment invariance due to large-amplitude turbulent fluctuations producing diffusion of ions toward higher kinetic energies in the direction perpendicular to the magnetic field. It is frequently invoked as a mechanism responsible for the heating of ions in the solar wind. Here, we quantify for the first time the proton SH rate Q⊥ at radial distances from the Sun as close as 0.16 au, using measurements from the first tw ... Martinovic, Mihailo; Klein, Kristopher; Kasper, Justin; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Chandran, Benjamin; Alterman, Ben; Huang, Jia; Chen, Christopher; Bale, Stuart; Pulupa, Marc; Malaspina, David; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab527f Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Solar Probe Plus |
The Parker Solar Probe (PSP) observed an interplanetary coronal mass ejection (ICME) event during its first orbit around the Sun, among many other events. This event is analyzed by applying a wavelet analysis technique to obtain the reduced magnetic helicity, cross helicity, and residual energy, the first two of which are magnetohydrodynamics (MHD) invariants. Our results show that the ICME, as a large-scale magnetic flux rope, possesses high magnetic helicity, very low cross helicity, and highly negative residual energy, ... Zhao, L.-L.; Zank, G.; Adhikari, L.; Hu, Q.; Kasper, J.; Bale, S.; Korreck, K.; Case, A.; Stevens, M.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Larson, D.; Livi, R.; Whittlesey, P.; Klein, K.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab4ff1 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
Ion-scale Electromagnetic Waves in the Inner Heliosphere Understanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA\textquoterights Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that t ... Bowen, Trevor; Mallet, Alfred; Huang, Jia; Klein, Kristopher; Malaspina, David; Stevens, Michael; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chaston, C.; Chen, Christopher; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Howes, Gregory; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; McManus, Michael; Pulupa, Marc; Verniero, J.; Whittlesey, Phyllis; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab6c65 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere In this work, we present the first results from the flux angle (FA) operation mode of the Faraday Cup instrument on board the Parker Solar Probe (PSP). The FA mode allows rapid measurements of phase space density fluctuations close to the peak of the proton velocity distribution function with a cadence of 293 Hz. This approach provides an invaluable tool for understanding kinetic-scale turbulence in the solar wind and solar corona. We describe a technique to convert the phase space density fluctuations into vector velocit ... Vech, Daniel; Kasper, Justin; Klein, Kristopher; Huang, Jia; Stevens, Michael; Chen, Christopher; Case, Anthony; Korreck, Kelly; Bale, Stuart; Bowen, Trevor; Whittlesey, Phyllis; Livi, Roberto; Larson, Davin; Malaspina, David; Pulupa, Marc; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab60a2 Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus |
Time Domain Structures and Dust in the Solar Vicinity: Parker Solar Probe Observations On 2019 April 5, while the Parker Solar Probe was at its 35 solar radius perihelion, the data set collected at 293 samples/s contained more than 10,000 examples of spiky electric-field-like structures with durations less than 200 milliseconds and amplitudes greater than 10 mV m-1. The vast majority of these events were caused by plasma turbulence. Defining dust events as those with similar, narrowly peaked, positive, and single-ended signatures resulted in finding 135 clear dust events, which, after correcting ... Mozer, F.; Agapitov, O.; Bale, S.; Bonnell, J.; Goetz, K.; Goodrich, K.; Gore, R.; Harvey, P.; Kellogg, P.; Malaspina, D.; Pulupa, M.; Schumm, G.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5e4b Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
We present a technique for deriving the temperature anisotropy of solar wind protons observed by the Parker Solar Probe (PSP) mission in the near-Sun solar wind. The radial proton temperature measured by the Solar Wind Electrons, Alphas, and Protons (SWEAP) Solar Probe Cup is compared with the orientation of local magnetic field measured by the FIELDS fluxgate magnetometer, and the proton temperatures parallel and perpendicular to the magnetic field are extracted. This procedure is applied to different data products, and the ... Huang, Jia; Kasper, J.; Vech, D.; Klein, K.; Stevens, M.; Martinovic, Mihailo; Alterman, B.; Durovcova, Tereza; Paulson, Kristoff; Maruca, Bennett; Qudsi, Ramiz; Case, A.; Korreck, K.; Jian, Lan; Velli, Marco; Lavraud, B.; Hegedus, A.; Bert, C.; Holmes, J.; Bale, Stuart; Larson, Davin; Livi, Roberto; Whittlesey, P.; Pulupa, Marc; MacDowall, Robert; Malaspina, David; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; Published by: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab74e0 |
Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters Small-scale magnetic flux ropes (SFRs) are a type of structure in the solar wind that possess helical magnetic field lines. In a recent report we presented the radial variations of the properties of SFRs from 0.29 to 8 au using in situ measurements from the Helios, Advanced Composition Explorer/WIND (ACE/Wind), Ulysses, and Voyager spacecrafts. With the launch of the Parker Solar Probe (PSP), we extend our previous investigation further into the inner heliosphere. We apply a Grad–Shafranov-based algorithm to identify SFRs ... Chen, Yu; Hu, Qiang; Zhao, Lingling; Kasper, Justin; Bale, Stuart; Korreck, Kelly; Case, Anthony; Stevens, Michael; Bonnell, John; Goetz, Keith; Harvey, Peter; Klein, Kristopher; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Whittlesey, Phyllis; Published by: The Astrophysical Journal Published on: YEAR: 2020   DOI: 10.3847/1538-4357/abb820 Solar wind; interplanetary turbulence; Magnetohydrodynamics; Astronomy data analysis; Astronomy databases; Parker Data Used |
2019 |
No Evidence for Critical Balance in Field-aligned Alfv\ enic Solar Wind Turbulence Telloni, Daniele; Carbone, Francesco; Bruno, Roberto; Sorriso-Valvo, Luca; Zank, Gary; Adhikari, Laxman; Hunana, Peter; Published by: \apj Published on: 12/2019 YEAR: 2019   DOI: 10.3847/1538-4357/ab517b Parker Data Used; interplanetary turbulence; Solar wind; Space plasmas; Alfven waves; Interplanetary medium; Magnetohydrodynamics; 830; 1534; 1544; 23; 825; 1964 |
Alfv\ enic velocity spikes and rotational flows in the near-Sun solar wind Kasper, J.~C.; Bale, S.~D.; Belcher, J.~W.; Berthomier, M.; Case, A.~W.; Chandran, B.~D.~G.; Curtis, D.~W.; Gallagher, D.; Gary, S.~P.; Golub, L.; Halekas, J.~S.; Ho, G.~C.; Horbury, T.~S.; Hu, Q.; Huang, J.; Klein, K.~G.; Korreck, K.~E.; Larson, D.~E.; Livi, R.; Maruca, B.; Lavraud, B.; Louarn, P.; Maksimovic, M.; Martinovic, M.; McGinnis, D.; Pogorelov, N.~V.; Richardson, J.~D.; Skoug, R.~M.; Steinberg, J.~T.; Stevens, M.~L.; Szabo, A.; Velli, M.; Whittlesey, P.~L.; Wright, K.~H.; Zank, G.~P.; MacDowall, R.~J.; McComas, D.~J.; McNutt, R.~L.; Pulupa, M.; Raouafi, N.~E.; Schwadron, N.~A.; Published by: \nat Published on: 12/2019 YEAR: 2019   DOI: 10.1038/s41586-019-1813-z |
Alfv\ enic velocity spikes and rotational flows in the near-Sun solar wind Kasper, J.~C.; Bale, S.~D.; Belcher, J.~W.; Berthomier, M.; Case, A.~W.; Chandran, B.~D.~G.; Curtis, D.~W.; Gallagher, D.; Gary, S.~P.; Golub, L.; Halekas, J.~S.; Ho, G.~C.; Horbury, T.~S.; Hu, Q.; Huang, J.; Klein, K.~G.; Korreck, K.~E.; Larson, D.~E.; Livi, R.; Maruca, B.; Lavraud, B.; Louarn, P.; Maksimovic, M.; Martinovic, M.; McGinnis, D.; Pogorelov, N.~V.; Richardson, J.~D.; Skoug, R.~M.; Steinberg, J.~T.; Stevens, M.~L.; Szabo, A.; Velli, M.; Whittlesey, P.~L.; Wright, K.~H.; Zank, G.~P.; MacDowall, R.~J.; McComas, D.~J.; McNutt, R.~L.; Pulupa, M.; Raouafi, N.~E.; Schwadron, N.~A.; Published by: \nat Published on: 12/2019 YEAR: 2019   DOI: 10.1038/s41586-019-1813-z |
Highly structured slow solar wind emerging from an equatorial coronal hole During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfv\ enic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of ... Bale, S.; Badman, S.; Bonnell, J.; Bowen, T.; Burgess, D.; Case, A.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Drake, J.; de Wit, Dudok; Eastwood, J.; Ergun, R.; Farrell, W.; Fong, C.; Goetz, K.; Goldstein, M.; Goodrich, K.; Harvey, P.; Horbury, T.; Howes, G.; Kasper, J.; Kellogg, P.; Klimchuk, J.; Korreck, K.; Krasnoselskikh, V.; Krucker, S.; Laker, R.; Larson, D.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Martinez-Oliveros, J.; McComas, D.; Meyer-Vernet, N.; Moncuquet, M.; Mozer, F.; Phan, T.; Pulupa, M.; Raouafi, N.; Salem, C.; Stansby, D.; Stevens, M.; Szabo, A.; Velli, M.; Woolley, T.; Wygant, J.; Published by: Nature Published on: 12/2019 YEAR: 2019   DOI: 10.1038/s41586-019-1818-7 |
Near-Sun observations of an F-corona decrease and K-corona fine structure Remote observations of the solar photospheric light scattered by electrons (the K-corona) and dust (the F-corona or zodiacal light) have been made from the ground during eclipses and from space at distances as small as 0.3 astronomical units to the Sun. Previous observations of dust scattering have not confirmed the existence of the theoretically predicted dust-free zone near the Sun. The transient nature of the corona has been well characterized for large events, but questions still remain (for example, about the initiat ... Howard, R.; Vourlidas, A.; Bothmer, V.; Colaninno, R.; Deforest, C.; Gallagher, B.; Hall, J.; Hess, P.; Higginson, A.; Korendyke, C.; Kouloumvakos, A.; Lamy, P.; Liewer, P.; Linker, J.; Linton, M.; Penteado, P.; Plunkett, S.; Poirier, N.; Raouafi, N.; Rich, N.; Rochus, P.; Rouillard, A.; Socker, D.; Stenborg, G.; Thernisien, A.; Viall, N.; Published by: Nature Published on: 12/2019 YEAR: 2019   DOI: 10.1038/s41586-019-1807-x |
Single-spacecraft Identification of Flux Tubes and Current Sheets in the Solar Wind A novel technique is presented for describing and visualizing the local topology of the magnetic field using single-spacecraft data in the solar wind. The approach merges two established techniques: the Grad-Shafranov (GS) reconstruction method, which provides a plausible regional two-dimensional magnetic field surrounding the spacecraft trajectory, and the Partial Variance of Increments (PVI) technique that identifies coherent magnetic structures, such as current sheets. When applied to one month of Wind magnetic field d ... Pecora, Francesco; Greco, Antonella; Hu, Qiang; Servidio, Sergio; Chasapis, Alexandros; Matthaeus, William; Published by: The Astrophysical Journal Published on: 08/2019 YEAR: 2019   DOI: 10.3847/2041-8213/ab32d9 interplanetary turbulence; magnetic fields; parker solar probe; Solar Probe Plus; Solar wind |
Frontiers to be explored by the Parker Solar Probe mission Published by: SCIENCE CHINA-TECHNOLOGICAL SCIENCES Published on: 08/2019 YEAR: 2019   DOI: 10.1007/s11431-018-9399-9 |
So you Passed an Earned Value Management Government Validation - Now What? In December 2016, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) received formal acceptance from NASA that its Earned Value Management System (EVMS) complied with the Electronic Industries Alliance (EIA) Standard 748 EVMS guidelines and thus had a government validated system. JHU/APL had successfully used its EVMS for single, large missions (Van Allen Probe from January 2009 to July 2012 and Parker Solar Probe from April 2014 to August 2018), but now with an increased workload JHU/APL was faced with the ne ... Liggett, William; Hunter, Howard; Jones, Matthew; Published by: IEEE Aerospace Conference Proceedings Published on: Budget control; Electronics industry; Financial data processing; Investments; NASA; Probes; Parker Engineering |
Execution of Parker solar probe s unprecedented flight to the sun and early results Parker Solar Probe (PSP) was launched on August 12, 2018, on its way to enter the solar corona and "touch" the Sun for the first time. We utilize enormous planetary gravity assists from 7 repeated Venus flybys via a V7GA trajectory in 24 solar orbits over 7 years, to get within 8.86 solar radii from the Sun s surface. The probe successfully entered the V7GA trajectory and made the first Venus flyby only 52 days after launch. Five weeks later it flew by the Sun at a perihelion distance of 0.166 AU and fl ... Guo, Yanping; Thompson, Paul; Wirzburger, John; Pinkine, Nick; Bushman, Stewart; Goodson, Troy; Haw, Rob; Hudson, James; Jones, Drew; Kijewski, Seth; Lathrop, Brian; Lau, Eunice; Mottinger, Neil; Ryne, Mark; Shyong, Wen-Jong; Valerino, Powtawche; Whittenburg, Karl; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Interplanetary flight; Navigation; Orbits; Space flight; Parker Engineering |
2018 |
Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based ... Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi; Published by: The Astrophysical Journal Published on: 02/2018 YEAR: 2018   DOI: 10.3847/2041-8213/aaabc1 parker solar probe; shock waves; Solar Probe Plus; Sun: coronal mass ejections: CMEs; Sun: heliosphere |
The techniques for stray light analysis, optimization and testing are described for two space telescopes that observe the solar corona: the Solar Orbiter Heliospheric Imager (SoloHI) that will fly on the ESA Solar Orbiter (SolO), and the Wide Field Imager for Solar Probe (WISPR) that will fly on the NASA Parker Solar Probe (PSP) mission. Imaging the solar corona is challenging, because the corona is six orders of magnitude dimmer than the Sun surface at the limb, and the coronal brightness continues to decrease to ten orders ... Thernisien, Arnaud; Howard, Russell; Korendyke, Clarence; Carter, Tim; Chua, Damien; Plunkett, Simon; Published by: Published on: YEAR: 2018   DOI: 10.1117/12.2313645 |
Orbit determination covariance analyses for the parker solar probe mission This paper details pre-launch navigation covariance analyses for the Parker Solar Probe mission. Baseline models and error assumptions are outlined. The results demonstrate how navigation will satisfy requirements and are used to define operational plans. A few sensitivities are identified and the accompanying investigations are described. Predicted state uncertainty results show that most requirements are met with substantial margin. Moreover, navigation sensitivities may be accommodated operationally and this has been inco ... Jones, Drew; Thompson, Paul; Valerino, Powtawche; Lau, Eunice; Goodson, Troy; Chung, Min-Kun; Mottinger, Neil; Published by: Advances in the Astronautical Sciences Published on: |
Parker solar probe navigation: One year from launch Parker Solar Probe (PSP) will be the first spacecraft designed to fly deep within the Sun’s lower corona and also becoming the fastest spacecraft flown. Launch is scheduled for next year, with a 20-day launch period beginning on 31 July 2018. PSP will be on a ballistic trajectory, requiring seven Venus flybys to progressively lower the perihelion over the seven-year mission. This near-solar environment can be particularly challenging from a spacecraft design as well as a navigation perspective. We discuss an overview o ... Thompson, Paul; Goodson, Troy; Chung, Min-Kun; Jones, Drew; Lau, Eunice; Mottinger, Neil; Valerino, Powtawche; Published by: Advances in the Astronautical Sciences Published on: |
Flight path control analysis for parker solar probe An unprecedented NASA mission to study the Sun, known as Parker Solar Probe (PSP), is under development. The primary objective of the PSP mission is to gather new data within 10 solar radii of the Sun’s center. The purpose of this paper is to review the statistical analysis of trajectory correction maneuvers (TCMs) for PSP’s baseline trajectory. The baseline mission includes a total of 42 TCMs that will be accomplished with a monopropellant propulsion system that consists of twelve 4.4 N thrusters. Assuming curre ... Valerino, Powtawche; Thompson, Paul; Jones, Drew; Goodson, Troy; Chung, Min-Kun; Mottinger, Neil; Published by: Advances in the Astronautical Sciences Published on: Astrophysics; NASA; Probes; Propulsion; Statistical methods; Parker Engineering |
The techniques for stray light analysis, optimization and testing are described for two space telescopes that observe the solar corona: the Solar Orbiter Heliospheric Imager (SoloHI) that will fly on the ESA Solar Orbiter (SolO), and the Wide Field Imager for Solar Probe (WISPR) that will fly on the NASA Parker Solar Probe (PSP) mission. Imaging the solar corona is challenging, because the corona is six orders of magnitude dimmer than the Sun surface at the limb, and the coronal brightness continues to decrease to ten orders ... Thernisien, Arnaud; Howard, Russell; Korendyke, Clarence; Carter, Tim; Chua, Damien; Plunkett, Simon; Published by: Proceedings of SPIE - The International Society for Optical Engineering Published on: Diffraction; Heat shielding; Image analysis; Millimeter waves; NASA; Optical coatings; Orbits; Probes; Ray tracing; Solar cell arrays; Solar radiation; Space flight; Space telescopes; Spacecraft; Parker Engineering |
2017 |
NASA\textquoterights Parker Solar Probe (PSP) spacecraft (formerly Solar Probe Plus) is scheduled for launch in July 2018 with a planned heliocentric orbit that will carry it on a series of close passes by the Sun with perihelion distances that eventually will get below 10 solar radii. Among other in-situ and imaging sensors, the PSP payload includes the two-instrument \textquotedblleftIntegrated Science Investigation of the Sun\textquotedblright suite, which will make coordinated measurements of energetic ions and electr ... Wiedenbeck, M.; Angold, N.; Birdwell, B.; Burnham, J.; Christian, E.; Cohen, C.; Cook, W.; Cummings, A.; Davis, A.; Dirks, G.; Do, D.; Everett, d.; Goodwin, P.; Hanley, J.; Hernandez, L.; Kecman, B.; Klemic, J.; Labrador, A.; Leske, R.; Lopez, S.; Link, J.; McComas, D.; Mewaldt, R.; Miyasaka, H.; Nahory, B.; Rankin, J.; Riggans, G.; Rodriguez, B.; Rusert, M.; Shuman, S.; Simms, K.; Stone, E.; von Rosenvinge, T.; Weidner, S.; White, M.; Published by: Published on: 10/2017 YEAR: 2017   DOI: 10.22323/1.301.0016 |
Turbulent Transport in a Three-dimensional Solar Wind Shiota, D.; Zank, G.~P.; Adhikari, L.; Hunana, P.; Telloni, D.; Bruno, R.; Published by: \apj Published on: 03/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa60bc Parker Data Used; magnetohydrodynamics: MHD; Solar wind; turbulence |
Charged Particle Diffusion in Isotropic Random Magnetic Fields Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D.; Matthaeus, W.~H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Parashar, T.~N.; Chhiber, R.; Published by: \apj Published on: 03/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa603a Parker Data Used; astroparticle physics; cosmic rays; diffusion; magnetic fields; scattering; turbulence; Physics - Space Physics; Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics |
The Mushroom: A half-sky energetic ion and electron detector We present a time-of-flight mass spectrometer design for the measurement of ions in the 30 keV to 10 MeV range for protons (up to 40 MeV and 150 MeV for He and heavy ions, respectively) and 30 keV to 1 MeV range for electrons, covering half of the sky with 80 apertures. The instrument, known as the "Mushroom," owing to its shape, solves the field of view problem for magnetospheric and heliospheric missions that employ three-axis stabilized spacecraft, yet still require extended angular coverage; the Mushroom is also compa ... Hill, M.; Mitchell, D.; Andrews, G.; Cooper, S.; Gurnee, R.; Hayes, J.; Layman, R.; McNutt, R.; Nelson, K.; Parker, C.; Schlemm, C.; Stokes, M.; Begley, S.; Boyle, M.; Burgum, J.; Do, D.; Dupont, A.; Gold, R.; Haggerty, D.; Hoffer, E.; Hutcheson, J.; Jaskulek, S.; Krimigis, S.; Liang, S.; London, S.; Noble, M.; Roelof, E.; Seifert, H.; Strohbehn, K.; Vandegriff, J.; Westlake, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2016JA022614 2 pi steradian; anisotropy; mass composition; microchannel plate; parker solar probe; Solar Probe Plus; solid-state detector; time of flight |
In 2012, The Johns Hopkins Applied Physics Laboratory (APL) was approved by the National Aeronautics and Space Administration (NASA) to move forward with Phase B of the Solar Probe Plus (SPP) Mission to design and build the first spacecraft to fly into the Sun s outer atmosphere and study its effects on planetary systems and human activities. While APL had successfully utilized its earned value management system (EVMS) on the Van Allen Probes mission, the SPP contract called for a "certified" EVMS, which required an in-depth ... Liggett, William; Hunter, Howard; Jones, Matthew; Published by: IEEE Aerospace Conference Proceedings Published on: Budget control; Compliance control; Contractors; Human resource management; Man machine systems; NASA; Network security; Personnel training; Probes; Project management; Space flight; Value engineering; Parker Engineering |
The radio frequency telecommunications system for the NASA Europa clipper mission The NASA Europa Clipper mission, a partnership between the California Institute of Technology Jet Propulsion Laboratory (JPL) and the Johns Hopkins University Applied Physics Laboratory (APL), is currently in Phase B and scheduled for launch in 2022. A Jupiter orbiter, it will perform repeated flybys of the moon, Europa, to assess the icy moon’s structure and habitability. The spacecraft’s dual X/Ka-band radio frequency telecommunications subsystem has five primary functions: Provide spacecraft command capability ... Srinivasan, Dipak; Angert, Matthew; Ballarotto, Mihaela; Berman, Simmie; Bray, Matthew; Garvey, Robert; Hahne, Devin; Haskins, Chris; Porter, Jamie; Schulze, Ron; Scott, Chris; Sharma, Avinash; Sheldon, Colin; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Data handling; Earth (planet); Microwave antennas; NASA; Orbits; Propulsion; Radio navigation; Radio waves; Space flight; Telecommunication; Traveling wave tubes; Parker Engineering |
Full wing qualification testing and incremental program update for the solar probe plus array As the Solar Probe Plus (SPP) program moves into the flight hardware build phase, the final testing of the qualification panel has been completed. The rigorous testing is many orders of magnitude more intensive than that used for standard earth-orbit missions. Testing under high irradiance, high temperature conditions over large areas poses design and logistic challenges, which have spurred innovation in steady state illumination. New test hardware of interest include a large area LED simulator capable of 6X AM0 string curre ... Gerger, Andrew; Stall, Richard; Schurman, Matthew; Sharps, Paul; Sulyma, Christopher; De Zetter, Karen; Johnson, Paul; Mitchell, Richard; Guevara, Roland; Crist, Kevin; Cisneros, Larry; Sarver, Charles; Published by: 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017 Published on: Degassing; Heliostats (instruments); Light emitting diodes; Orbits; Probes; Silicones; Solar cell arrays; Wings; Parker Engineering |
NASA s Parker Solar Probe (PSP) spacecraft (formerly Solar Probe Plus) is scheduled for launch in July 2018 with a planned heliocentric orbit that will carry it on a series of close passes by the Sun with perihelion distances that eventually will get below 10 solar radii. Among other in-situ and imaging sensors, the PSP payload includes the two-instrument "Integrated Science Investigation of the Sun" suite, which will make coordinated measurements of energetic ions and electrons. The high-energy instrument (EPI-Hi), operatin ... Wiedenbeck, M.E.; Angold, N.G.; Birdwell, B.; Burnham, J.A.; Christian, E.R.; Cohen, C.M.S.; Cook, W.R.; Crabill, R.M.; Cummings, A.C.; Davis, A.J.; Dirks, G.; Do, D.H.; Everett, D.T.; Goodwin, P.A.; Hanley, J.J.; Hernandez, L.; Kecman, B.; Klemic, J.; Labrador, A.W.; Leske, R.A.; Lopez, S.; Link, J.T.; McComas, D.J.; Mewaldt, R.A.; Miyasaka, H.; Nahory, B.W.; Rankin, J.S.; Riggans, G.; Rodriguez, B.; Rusert, M.D.; Shuman, S.A.; Simms, K.M.; Stone, E.C.; Von Rosenvinge, T.T.; Weidner, S.E.; White, M.L.; Published by: Proceedings of Science Published on: cosmic rays; Cosmology; NASA; Orbits; Probes; Radioactivity; Parker Engineering |
2016 |
The FIELDS Instrument Suite for Solar Probe Plus NASA\textquoterights Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument conce ... Bale, S.; Goetz, K.; Harvey, P.; Turin, P.; Bonnell, J.; de Wit, T.; Ergun, R.; MacDowall, R.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.; Burgess, D.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Choi, M.; Connerney, J.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.; Farrell, W.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.; Hayes, L.; Hinze, J.; Hollweg, J.; Horbury, T.; Howard, R.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.; Kellogg, P.; Kien, M.; Klimchuk, J.; Krasnoselskikh, V.; Krucker, S.; Lynch, J.; Maksimovic, M.; Malaspina, D.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.; Mozer, F.; Murphy, S.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.; Salem, C.; Seitz, D.; Sheppard, D.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.; Published by: Space Science Reviews Published on: 12/2016 YEAR: 2016   DOI: 10.1007/s11214-016-0244-5 Coronal heating; Parker Data Used; parker solar probe; Solar Probe Plus |
Tooprakai, P.; Seripienlert, A.; Ruffolo, D.; Chuychai, P.; Matthaeus, W.~H.; Published by: \apj Published on: 11/2016 YEAR: 2016   DOI: 10.3847/0004-637X/831/2/195 Parker Data Used; magnetic fields; Solar wind; Sun: particle emission; turbulence |
Magnetic Field Line Random Walk in Isotropic Turbulence with Varying Mean Field Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W.~H.; Snodin, A.~P.; Wongpan, P.; Chuychai, P.; Rowlands, G.; Vyas, S.; Published by: \apjs Published on: 08/2016 YEAR: 2016   DOI: 10.3847/0067-0049/225/2/20 |
The Wide-Field Imager for Solar Probe Plus (WISPR) Vourlidas, Angelos; Howard, Russell; Plunkett, Simon; Korendyke, Clarence; Thernisien, Arnaud; Wang, Dennis; Rich, Nathan; Carter, Michael; Chua, Damien; Socker, Dennis; Linton, Mark; Morrill, Jeff; Lynch, Sean; Thurn, Adam; Van Duyne, Peter; Hagood, Robert; Clifford, Greg; Grey, Phares; Velli, Marco; Liewer, Paulett; Hall, Jeffrey; DeJong, Eric; Mikic, Zoran; Rochus, Pierre; Mazy, Emanuel; Bothmer, Volker; Rodmann, Jens; Published by: Space Science Reviews Published on: 02/2015 YEAR: 2016   DOI: 10.1007/s11214-014-0114-y Heliospheric imager; Imaging; Parker Data Used; Solar corona; Solar Probe Plus; Solar wind; Thomson scattering |
The Wide-Field Imager for Solar Probe Plus (WISPR) Vourlidas, Angelos; Howard, Russell; Plunkett, Simon; Korendyke, Clarence; Thernisien, Arnaud; Wang, Dennis; Rich, Nathan; Carter, Michael; Chua, Damien; Socker, Dennis; Linton, Mark; Morrill, Jeff; Lynch, Sean; Thurn, Adam; Van Duyne, Peter; Hagood, Robert; Clifford, Greg; Grey, Phares; Velli, Marco; Liewer, Paulett; Hall, Jeffrey; DeJong, Eric; Mikic, Zoran; Rochus, Pierre; Mazy, Emanuel; Bothmer, Volker; Rodmann, Jens; Published by: Space Science Reviews Published on: 02/2015 YEAR: 2016   DOI: 10.1007/s11214-014-0114-y Heliospheric imager; Imaging; Parker Data Used; Solar corona; Solar Probe Plus; Solar wind; Thomson scattering |
The Wide-Field Imager for Solar Probe Plus (WISPR) Vourlidas, Angelos; Howard, Russell; Plunkett, Simon; Korendyke, Clarence; Thernisien, Arnaud; Wang, Dennis; Rich, Nathan; Carter, Michael; Chua, Damien; Socker, Dennis; Linton, Mark; Morrill, Jeff; Lynch, Sean; Thurn, Adam; Van Duyne, Peter; Hagood, Robert; Clifford, Greg; Grey, Phares; Velli, Marco; Liewer, Paulett; Hall, Jeffrey; DeJong, Eric; Mikic, Zoran; Rochus, Pierre; Mazy, Emanuel; Bothmer, Volker; Rodmann, Jens; Published by: Space Science Reviews Published on: 02/2015 YEAR: 2016   DOI: 10.1007/s11214-014-0114-y Heliospheric imager; Imaging; Parker Data Used; Solar corona; Solar Probe Plus; Solar wind; Thomson scattering |
Full wing qualification testing and incremental program update for the solar probe plus array As the Solar Probe Plus (SPP) program moves into the flight hardware build phase, the final testing of the qualification panel has been completed. The rigorous testing is many orders of magnitude more intensive than that used for standard earth-orbit missions. Testing under high irradiance, high temperature conditions over large areas poses design and logistic challenges, which have spurred innovation in steady state illumination. New test hardware of interest include a large area LED simulator capable of 6X AM0 string curre ... Gerger, Andrew; Stall, Richard; Schurman, Matthew; Sharps, Paul; Sulyma, Christopher; De Zetter, Karen; Johnson, Paul; Mitchell, Richard; Guevara, Roland; Crist, Kevin; Cisneros, Larry; Sarver, Charles; Published by: Conference Record of the IEEE Photovoltaic Specialists Conference Published on: Degassing; Heliostats (instruments); Light emitting diodes; Orbits; Probes; Silicones; Solar cell arrays; Wings; Parker Engineering |
2015 |
The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ... Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary; Published by: Space Science Reviews Published on: 10/2015 YEAR: 2015   DOI: 10.1007/s11214-015-0206-3 Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP |
Magnetic Field Line Random Walk in Isotropic Turbulence with Zero Mean Field Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W.~H.; Snodin, A.~P.; Wongpan, P.; Chuychai, P.; Published by: \apj Published on: 01/2015 YEAR: 2015   DOI: 10.1088/0004-637X/798/1/59 Parker Data Used; diffusion; ISM: magnetic fields; turbulence |
2014 |
Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun\textquoterights surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1)\ O ... McComas, D.; Alexander, N.; Angold, N.; Bale, S.; Beebe, C.; Birdwell, B.; Boyle, M.; Burgum, J.; Burnham, J.; Christian, E.; Cook, W.; Cooper, S.; Cummings, A.; Davis, A.; Desai, M.; Dickinson, J.; Dirks, G.; Do, D.; Fox, N.; Giacalone, J.; Gold, R.; Gurnee, R.; Hayes, J.; Hill, M.; Kasper, J.; Kecman, B.; Klemic, J.; Krimigis, S.; Labrador, A.; Layman, R.; Leske, R.; Livi, S.; Matthaeus, W.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Nelson, K.; Parker, C.; Rankin, J.; Roelof, E.; Schwadron, N.; Seifert, H.; Shuman, S.; Stokes, M.; Stone, E.; Vandegriff, J.; Velli, M.; von Rosenvinge, T.; Weidner, S.; Wiedenbeck, M.; Wilson, P.; Published by: Space Science Reviews Published on: 07/2014 YEAR: 2014   DOI: 10.1007/s11214-014-0059-1 CMEs; Corona; ISIS; Parker Data Used; Particle acceleration; SEPs; Solar energetic particles; Solar Probe Plus |
Technique for measuring and correcting the Taylor microscale Chuychai, P.; Weygand, J.~M.; Matthaeus, W.~H.; Dasso, S.; Smith, C.~W.; Kivelson, M.~G.; Published by: Journal of Geophysical Research (Space Physics) Published on: 06/2014 YEAR: 2014   DOI: 10.1002/2013JA019641 Parker Data Used; Solar wind; magnetic field; correlation functions |
Predicting the solar probe plus solar array output Predicting the output of the Solar Probe Plus (SPP) solar array presents unique challenges as the array operates at very high temperatures and irradiances, and has a water-cooled substrate. A further complication arises because, close to perihelion, each string operates at an irradiance and temperature different from the other strings. This paper provides the methodology and results for computing the output of the array over a range of irradiances from zero to seventy suns, temperatures from -80°C to 164°C, and angle ... Gaddy, Edward; Butler, Michael; Lockwood, Mary; Martin, Gayle; Roufberg, Lew; Vigil, Cristina; Boca, Andreea; Richards, Benjamin; Stall, Rick; Schurman, Matthew; Published by: 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 Published on: Aerospace engineering; Cell engineering; Photoelectrochemical cells; Photovoltaic cells; Probes; Satellites; Solar cell arrays; Sun; Parker Engineering |
2013 |
Squeezing of Particle Distributions by Expanding Magnetic Turbulence and Space Weather Variability Ruffolo, D.; Seripienlert, A.; Tooprakai, P.; Chuychai, P.; Matthaeus, W.~H.; Published by: \apj Published on: 12/2013 YEAR: 2013   DOI: 10.1088/0004-637X/779/1/74 Parker Data Used; galaxies: jets; ISM: jets and outflows; magnetic fields; solar-terrestrial relations; Solar wind; turbulence |
Vourlidas, Angelos; Howard, Russell; Plunkett, Simon; Korendyke, Clarence; Carter, Michael; Thernisien, Arnaud; Chua, Damien; Van Duyne, Peter; Socker, Dennis; Linton, Mark; Liewer, Paulett; Hall, Jeffrey; Morrill, Jeff; DeJong, Eric; Mikic, Zoran; Rochus, Pierre; Bothmer, Volker; Rodman, Jens; Lamy, Philippe; Published by: Published on: 09/2013 YEAR: 2013   DOI: 10.1117/12.2027508 Heliospheric imager; Imaging; Parker Data Used; Solar corona; Solar Probe Plus; Solar wind; Thomson scattering |
Vourlidas, Angelos; Howard, Russell; Plunkett, Simon; Korendyke, Clarence; Carter, Michael; Thernisien, Arnaud; Chua, Damien; Van Duyne, Peter; Socker, Dennis; Linton, Mark; Liewer, Paulett; Hall, Jeffrey; Morrill, Jeff; DeJong, Eric; Mikic, Zoran; Rochus, Pierre; Bothmer, Volker; Rodman, Jens; Lamy, Philippe; Published by: Published on: 09/2013 YEAR: 2013   DOI: 10.1117/12.2027508 Heliospheric imager; Imaging; Parker Data Used; Solar corona; Solar Probe Plus; Solar wind; Thomson scattering |
2012 |
Random Ballistic Interpretation of Nonlinear Guiding Center Theory Ruffolo, D.; Pianpanit, T.; Matthaeus, W.~H.; Chuychai, P.; Published by: \apjl Published on: 03/2012 YEAR: 2012   DOI: 10.1088/2041-8205/747/2/L34 |