PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 214 entries in the Bibliography.


Showing entries from 51 through 100


2020

Turbulence Characteristics of Switchback and Nonswitchback Intervals Observed by Parker Solar Probe

We use Parker Solar Probe (PSP) in situ measurements to analyze the characteristics of solar wind turbulence during the first solar encounter covering radial distances between 35.7R and 41.7R. In our analysis we isolate so-called switchback (SB) intervals (folded magnetic field lines) from nonswitchback (NSB) intervals, which mainly follow the Parker spiral field. Using a technique based on conditioned correlation functions, we estimate the power spectra of Elsasser, magnetic, and bulk velocity fields separately in the SB an ...

Bourouaine, Sofiane; Perez, Jean; Klein, Kristopher; Chen, Christopher; Martinovic, Mihailo; Bale, Stuart; Kasper, Justin; Raouafi, Nour;

Published by: ASTROPHYSICAL JOURNAL LETTERS      Published on: 12/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abbd4a

Parker Data Used

Radio Signature of a Distant behind-the-limb CME on 2017 September 6

We discuss properties of a Type IV burst, which was observed on 2017 September 6, as a result of the powerful flare X 9.3. At decameter wavelengths this burst was observed by the radio telescopes STEREO A, URAN-2, and the Nancay Decameter Array at frequencies 5-35 MHz. This moving Type IV burst was associated with a coronal mass ejection (CME) propagating in the southwest direction with a speed of 1570 km s(-1). The maximum radio flux of this burst was about 300 s.f.u. and the polarization was more than 40\%. In the frequenc ...

Melnik, V.; Rucker, H.; Brazhenko, I.; Panchenko, M.; Konovalenko, A.; , Frantsuzenko; Dorovskyy, V.; , Shevchuk;

Published by: ASTROPHYSICAL JOURNAL      Published on: 12/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abbfb3

Parker Data Used

Radio Signature of a Distant behind-the-limb CME on 2017 September 6

We discuss properties of a Type IV burst, which was observed on 2017 September 6, as a result of the powerful flare X 9.3. At decameter wavelengths this burst was observed by the radio telescopes STEREO A, URAN-2, and the Nancay Decameter Array at frequencies 5-35 MHz. This moving Type IV burst was associated with a coronal mass ejection (CME) propagating in the southwest direction with a speed of 1570 km s(-1). The maximum radio flux of this burst was about 300 s.f.u. and the polarization was more than 40\%. In the frequenc ...

Melnik, V.; Rucker, H.; Brazhenko, I.; Panchenko, M.; Konovalenko, A.; , Frantsuzenko; Dorovskyy, V.; , Shevchuk;

Published by: ASTROPHYSICAL JOURNAL      Published on: 12/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abbfb3

Parker Data Used

Bi-directional streaming of particles accelerated at the STEREO-A shock on 2008 March 9

Fraschetti, F.; Giacalone, J.;

Published by: \mnras      Published on: 12/2020

YEAR: 2020     DOI: 10.1093/mnras/staa3021

Parker Data Used; acceleration of particles; shock waves; turbulence; Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Energy Supply for Heating the Slow Solar Wind Observed by Parker Solar Probe between 0.17 and 0.7 au

Energy supply sources for the heating process in the slow solar wind remain unknown. The Parker Solar Probe (PSP) mission provides a good opportunity to study this issue. Recently, PSP observations have found that the slow solar wind experiences stronger heating inside 0.24 au. Here for the first time we measure in the slow solar wind the radial gradient of the low-frequency breaks on the magnetic trace power spectra and evaluate the associated energy supply rate. We find that the energy supply rate is consistent with the ob ...

Wu, Honghong; Tu, Chuanyi; Wang, Xin; He, Jiansen; Yang, Liping;

Published by: The Astrophysical Journal      Published on: 11/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abc5b6

Parker Data Used; Slow solar wind; interplanetary turbulence; Solar coronal heating

Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2

The current understanding of the characteristics of\ solar\ and inner heliospheric electron events is inferred almost entirely from observations made by spacecraft located at 1 astronomical unit (au). Previous observations within 1 au of the Sun, by the Helios spacecraft at similar to 0.3-1 au, indicate the presence of electron events that are not detected at 1 au or may have merged during transport from the Sun.\ Parker\ Solar\ Probe\textquoterights close proximity to the Sun at perihelion provid ...

Mitchell, J.; de Nolfo, G.; Hill, M.; Christian, E.; McComas, D.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Case, A.; Cohen, C.; Joyce, C.; Kasper, J.; Labrador, A.; Leske, R.; MacDowall, R.; Mewaldt, R.; Mitchell, D.; Pulupa, M.; Richardson, I.; Stevens, M.; Szalay, J.;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb2a4

Parker Data Used; parker solar probe; Radio bursts; Solar energetic particles; solar flares; Solar particle emission; Solar Physics; Solar Probe Plus

Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2

The current understanding of the characteristics of\ solar\ and inner heliospheric electron events is inferred almost entirely from observations made by spacecraft located at 1 astronomical unit (au). Previous observations within 1 au of the Sun, by the Helios spacecraft at similar to 0.3-1 au, indicate the presence of electron events that are not detected at 1 au or may have merged during transport from the Sun.\ Parker\ Solar\ Probe\textquoterights close proximity to the Sun at perihelion provid ...

Mitchell, J.; de Nolfo, G.; Hill, M.; Christian, E.; McComas, D.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Case, A.; Cohen, C.; Joyce, C.; Kasper, J.; Labrador, A.; Leske, R.; MacDowall, R.; Mewaldt, R.; Mitchell, D.; Pulupa, M.; Richardson, I.; Stevens, M.; Szalay, J.;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb2a4

Parker Data Used; parker solar probe; Radio bursts; Solar energetic particles; solar flares; Solar particle emission; Solar Physics; Solar Probe Plus

Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2

The current understanding of the characteristics of\ solar\ and inner heliospheric electron events is inferred almost entirely from observations made by spacecraft located at 1 astronomical unit (au). Previous observations within 1 au of the Sun, by the Helios spacecraft at similar to 0.3-1 au, indicate the presence of electron events that are not detected at 1 au or may have merged during transport from the Sun.\ Parker\ Solar\ Probe\textquoterights close proximity to the Sun at perihelion provid ...

Mitchell, J.; de Nolfo, G.; Hill, M.; Christian, E.; McComas, D.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Case, A.; Cohen, C.; Joyce, C.; Kasper, J.; Labrador, A.; Leske, R.; MacDowall, R.; Mewaldt, R.; Mitchell, D.; Pulupa, M.; Richardson, I.; Stevens, M.; Szalay, J.;

Published by: The Astrophysical Journal      Published on: 10/2020

YEAR: 2020     DOI: 10.3847/1538-4357/abb2a4

Parker Data Used; parker solar probe; Radio bursts; Solar energetic particles; solar flares; Solar particle emission; Solar Physics; Solar Probe Plus

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Wave Composition, Propagation, and Polarization of Magnetohydrodynamic Turbulence within 0.3 au as Observed by Parker Solar Probe

Turbulence, a ubiquitous phenomenon in interplanetary space, is crucial for the energy conversion of space plasma at multiple scales. This work focuses on the propagation, polarization, and wave composition properties of the\ solar\ wind turbulence within 0.3 au, and its variation with heliocentric distance at magnetohydrodynamic scales (from 10 s to 1000 s in the spacecraft frame). We present the probability density function of propagation wavevectors (PDF (k(parallel to),k)) for\ solar\ wind turbulen ...

Zhu, Xingyu; He, Jiansen; Verscharen, Daniel; Duan, Die; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 09/2020

YEAR: 2020     DOI: 10.3847/2041-8213/abb23e

Alfv\ en waves; Heliosphere; interplanetary turbulence; Parker Data Used; parker solar probe; Slow solar wind; Solar Probe Plus

Low-cost precursor of an interstellar mission

Heller, Ren\; e, Guillem; Hippke, Michael; Kervella, Pierre;

Published by: \aap      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038687

acceleration of particles; methods: observational; site testing; solar neighborhood; space vehicles; Astrophysics - Instrumentation and Methods for Astrophysics; Physics - Space Physics

Kinetic Scale Slow Solar Wind Turbulence in the Inner Heliosphere: Coexistence of Kinetic Alfv\ en Waves and Alfv\ en Ion Cyclotron Waves

The nature of the plasma wave modes around the ion kinetic scales in highly Alfv\ enic slow solar wind turbulence is investigated using data from the NASA\textquoterights Parker Solar Probe taken in the inner heliosphere, at 0.18 au from the Sun. The joint distribution of the normalized reduced magnetic helicity σmRB, τ) is obtained, where θRB is the angle between the local mean magnetic field and the radial direction and τ is the temporal scale. Two populations around ion scales a ...

Huang, S; Zhang, J.; Sahraoui, F.; He, J.; Yuan, Z.; es, Andr\; Hadid, L.; Deng, X.; Jiang, K.; Yu, L.; Xiong, Q; Wei, Y; Xu, S.; Bale, S.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab9abb

1261; 1534; 1544; 1693; 1873; 23; 711; 824; 830; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed

Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ...

Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab93b6

1534; parker solar probe; Solar Probe Plus

Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4 . Based on our measurements, we demonstrate that either a significant (\>50 \%) fraction of the total turbulent energy flux is dissipated in this range of scales ...

Bowen, Trevor; Mallet, Alfred; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chasapis, Alexandros; Chen, Christopher; Duan, Die; de Wit, Thierry; Goetz, Keith; Halekas, Jasper; Harvey, Peter; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; McManus, Michael; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

Published by: Physical Review Letters      Published on: 07/2020

YEAR: 2020     DOI: 10.1103/PhysRevLett.125.025102

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

A new view of energetic particles from stream interaction regions observed by Parker Solar Probe

Early observations from the first orbit of Parker Solar Probe (PSP) show recurrent stream interaction regions that form close to the Sun. Energetic particle enhancements were observed on the 320th-326th day of the year 2018, which corresponds to ~1-7 days after the passage of the stream interface between faster and slower solar wind. Energetic particles stream into the inner heliosphere to the PSP spacecraft near 0.33 au (71 solar radii) where they are measured by the Integrated Science Investigation of the Sun (IS⊙IS). Th ...

Schwadron, N.; Joyce, C.; Aly, A.; Cohen, C.; Desai, M.; McComas, D.; Niehof, J.; Möbius, E.; al., et;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2020     DOI: "10.1051/0004-6361/202039352"

Parker Data Used; parker solar probe; Solar Probe Plus

Effects of Radial Distances on Small-scale Magnetic Flux Ropes in the Solar Wind

Small-scale magnetic flux ropes (SFRs) in the solar wind have been studied for decades. Statistical analysis utilizing various in situ spacecraft measurements is the main observational approach to investigating the generation and evolution of these small-scale structures. Based on the Grad-Shafranov reconstruction technique, we use the automated detection algorithm to build the databases of these small-scale structures via various spacecraft measurements at different heliocentric distances. We present the SFR properties, ...

Chen, Yu; Hu, Qiang;

Published by: The Astrophysical Journal      Published on: 05/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab8294

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus

A Merged Search-Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS

NASA\textquoterights Parker Solar Probe (PSP) mission is currently investigating the local plasma environment of the inner heliosphere (\<0.25 R) using both in situ and remote sensing instrumentation. Connecting signatures of microphysical particle heating and acceleration processes to macroscale heliospheric structure requires sensitive measurements of electromagnetic fields over a large range of physical scales. The FIELDS instrument, which provides PSP with in situ measurements of electromagnetic field ...

Bowen, T.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Gruesbeck, J.; Harvey, P.; Jannet, G.; Koval, A.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Sheppard, D.; Szabo, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: 10.1029/2020JA027813

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Instrumentation and Detectors; Physics - Space Physics; Solar Probe Plus

Project Lyra: Catching 1I/\textquoteleftOumuamua \textendash Mission opportunities after 2024

In October 2017, the first interstellar object within our solar system was discovered. Today designated 1I/\textquoterightOumuamua, it shows characteristics that have never before been observed in a celestial body. Due to these characteristics, an in-situ investigation of 1I would be of extraordinary scientific value. Previous studies have demonstrated that a mission to 1I/\textquoterightOumuamua is feasible using current and near-term technologies, however, with an anticipated launch date of 2020-2021. This is too soon t ...

Hibberd, Adam; Hein, Andreas; Eubanks, Marshall;

Published by: Acta Astronautica      Published on: 05/2020

YEAR: 2020     DOI: 10.1016/j.actaastro.2020.01.018

DeltaV; Interplanetary; Optimization; Oumuamua; parker solar probe; Physics - Space Physics; Solar Oberth; Solar Probe Plus; Trajectory

Electron Energy Partition across Interplanetary Shocks. III. Analysis

Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine;

Published by: \apj      Published on: 04/2020

YEAR: 2020     DOI: 10.3847/1538-4357/ab7d39

Parker Data Used; 1534; 829; 310; 1997; 1544; 1261; 2089; 826; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles

The Wide-field Imager for Parker Solar Probe (WISPR) captures unprecedented white-light images of the solar corona and inner heliosphere. Thanks to the uniqueness of the Parker Solar Probe\textquoterights (PSP) orbit, WISPR is able to image "locally" coronal structures at high spatial and time resolutions. The observed plane of sky, however, rapidly changes because of the PSP\textquoterights high orbital speed. Therefore, the interpretation of the dynamics of the coronal structures recorded by WISPR is not straightforward ...

Nisticò, Giuseppe; Bothmer, Volker; Vourlidas, Angelos; Liewer, Paulett; Thernisien, Arnaud; Stenborg, Guillermo; Howard, Russell;

Published by: Solar Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01626-y

Astrophysics - Solar and Stellar Astrophysics; Corona; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Detailed Imaging of Coronal Rays with the Parker Solar Probe

The Wide-field Imager for Solar PRobe (WISPR) obtained the first high-resolution images of coronal rays at heights below 15 R when the Parker Solar Probe (PSP) was located inside 0.25 au during the first encounter. We exploit these remarkable images to reveal the structure of coronal rays at scales that are not easily discernible in images taken from near 1 au. To analyze and interpret WISPR observations, which evolve rapidly both radially and longitudinally, we construct a latitude versus time map using the ...

Poirier, Nicolas; Kouloumvakos, Athanasios; Rouillard, Alexis; Pinto, Rui; Vourlidas, Angelos; Stenborg, Guillermo; Valette, Emeline; Howard, Russell; Hess, Phillip; Thernisien, Arnaud; Rich, Nathan; Griton, Lea; Indurain, Mikel; Raouafi, Nour-Edine; Lavarra, Michael; eville, Victor;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab6324

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Detailed Imaging of Coronal Rays with the Parker Solar Probe

The Wide-field Imager for Solar PRobe (WISPR) obtained the first high-resolution images of coronal rays at heights below 15 R when the Parker Solar Probe (PSP) was located inside 0.25 au during the first encounter. We exploit these remarkable images to reveal the structure of coronal rays at scales that are not easily discernible in images taken from near 1 au. To analyze and interpret WISPR observations, which evolve rapidly both radially and longitudinally, we construct a latitude versus time map using the ...

Poirier, Nicolas; Kouloumvakos, Athanasios; Rouillard, Alexis; Pinto, Rui; Vourlidas, Angelos; Stenborg, Guillermo; Valette, Emeline; Howard, Russell; Hess, Phillip; Thernisien, Arnaud; Rich, Nathan; Griton, Lea; Indurain, Mikel; Raouafi, Nour-Edine; Lavarra, Michael; eville, Victor;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab6324

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Operational Modeling of Heliospheric Space Weather for the Parker Solar Probe

The interpretation of multi-spacecraft heliospheric observations and three-dimensional reconstruction of the structured and evolving solar wind with propagating and interacting coronal mass ejections (CMEs) is a challenging task. Numerical simulations can provide global context and suggest what may and may not be observed. The Community Coordinated Modeling Center (CCMC) provides both mission science and space weather support to all heliospheric missions. Currently, this is realized by real-time simulations of the corotating ...

Odstrcil, Dusan; Mays, Leila; Hess, Phillip; Jones, Shaela; Henney, Carl; Arge, Charles;

Published by: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab77cb

Parker Data Used

Operational Modeling of Heliospheric Space Weather for the Parker Solar Probe

The interpretation of multi-spacecraft heliospheric observations and three-dimensional reconstruction of the structured and evolving solar wind with propagating and interacting coronal mass ejections (CMEs) is a challenging task. Numerical simulations can provide global context and suggest what may and may not be observed. The Community Coordinated Modeling Center (CCMC) provides both mission science and space weather support to all heliospheric missions. Currently, this is realized by real-time simulations of the corotating ...

Odstrcil, Dusan; Mays, Leila; Hess, Phillip; Jones, Shaela; Henney, Carl; Arge, Charles;

Published by: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab77cb

Parker Data Used

Energetic Particle Increases Associated with Stream Interaction Regions

The Parker Solar Probe was launched on 2018 August 12 and completed its second orbit on 2019 June 19 with perihelion of 35.7 solar radii. During this time, the Energetic Particle Instrument-Hi (EPI-Hi, one of the two energetic particle instruments comprising the Integrated Science Investigation of the Sun, IS☉IS) measured seven proton intensity increases associated with stream interaction regions (SIRs), two of which appear to be occurring in the same region corotating with the Sun. The events are relatively weak, with ...

Cohen, C.; Christian, E.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Labrador, A.; Leske, R.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Allen, R.; Ho, G.; Jian, L.; Lario, D.; Odstrcil, D.; Bale, S.; Badman, S.; Pulupa, M.; MacDowall, R.; Kasper, J.; Case, A.; Korreck, K.; Larson, D.; Livi, Roberto; Stevens, M.; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab4c38

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Energetic Particle Increases Associated with Stream Interaction Regions

The Parker Solar Probe was launched on 2018 August 12 and completed its second orbit on 2019 June 19 with perihelion of 35.7 solar radii. During this time, the Energetic Particle Instrument-Hi (EPI-Hi, one of the two energetic particle instruments comprising the Integrated Science Investigation of the Sun, IS☉IS) measured seven proton intensity increases associated with stream interaction regions (SIRs), two of which appear to be occurring in the same region corotating with the Sun. The events are relatively weak, with ...

Cohen, C.; Christian, E.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Labrador, A.; Leske, R.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Allen, R.; Ho, G.; Jian, L.; Lario, D.; Odstrcil, D.; Bale, S.; Badman, S.; Pulupa, M.; MacDowall, R.; Kasper, J.; Case, A.; Korreck, K.; Larson, D.; Livi, Roberto; Stevens, M.; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab4c38

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Energetic Particle Observations from the Parker Solar Probe Using Combined Energy Spectra from the IS⊙IS Instrument Suite

The Integrated Science Investigations of the Sun (IS☉IS) instrument suite includes two Energetic Particle instruments: EPI-Hi, designed to measure ions from ̃1 to 200 MeV nuc-1, and EPI-Lo, designed to measure ions from ̃20 to ̃15 MeV nuc-1. We present an analysis of eight energetic proton events observed across the energy range of both instruments during Parker Solar Probe\textquoterights (PSP) first two orbits in order to examine their combined energy spectra. Background corrections are applie ...

Joyce, C.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5948

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Energetic Particle Observations from the Parker Solar Probe Using Combined Energy Spectra from the IS⊙IS Instrument Suite

The Integrated Science Investigations of the Sun (IS☉IS) instrument suite includes two Energetic Particle instruments: EPI-Hi, designed to measure ions from ̃1 to 200 MeV nuc-1, and EPI-Lo, designed to measure ions from ̃20 to ̃15 MeV nuc-1. We present an analysis of eight energetic proton events observed across the energy range of both instruments during Parker Solar Probe\textquoterights (PSP) first two orbits in order to examine their combined energy spectra. Background corrections are applie ...

Joyce, C.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5948

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind

Stochastic heating (SH) is a nonlinear heating mechanism driven by the violation of magnetic moment invariance due to large-amplitude turbulent fluctuations producing diffusion of ions toward higher kinetic energies in the direction perpendicular to the magnetic field. It is frequently invoked as a mechanism responsible for the heating of ions in the solar wind. Here, we quantify for the first time the proton SH rate Q at radial distances from the Sun as close as 0.16 au, using measurements from the first tw ...

Martinovic, Mihailo; Klein, Kristopher; Kasper, Justin; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Chandran, Benjamin; Alterman, Ben; Huang, Jia; Chen, Christopher; Bale, Stuart; Pulupa, Marc; Malaspina, David; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab527f

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Solar Probe Plus

The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere

The first two orbits of the Parker Solar Probe spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 R\ ⊙\ \ R⊙ ). Here, we present an analysis of this data to study solar wind turbulence at 0.17 au and its evolution out to 1 au. While many features remain similar, key differences at 0.17 au include increased turbulence energy levels by more than an order of magnitude, a magnetic field spectral index of -3/2 matching that of t ...

Chen, C.; Bale, S.; Bonnell, J.; Borovikov, D.; Bowen, T.; Burgess, D.; Case, A.; Chandran, B.; de Wit, Dudok; Goetz, K.; Harvey, P.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Mallet, A.; McManus, M.; Moncuquet, M.; Pulupa, M.; Stevens, M.; Whittlesey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab60a3

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe

The Parker Solar Probe (PSP) completed its first solar encounter in 2018 November, bringing it closer to the Sun than any previous mission. This allowed in situ investigation of the heliospheric current sheet (HCS) inside the orbit of Venus. The Parker observations reveal a well defined magnetic sector structure placing the spacecraft in a negative polarity region for most of the encounter. The observed current sheet crossings are compared to the predictions of both potential field source surface and magnetohydrodynamic m ...

Szabo, Adam; Larson, Davin; Whittlesey, Phyllis; Stevens, Michael; Lavraud, Benoit; Phan, Tai; Wallace, Samantha; Jones-Mecholsky, Shaela; Arge, Charles; Badman, Samuel; Odstrcil, Dusan; Pogorelov, Nikolai; Kim, Tae; Riley, Pete; Henney, Carl; Bale, Stuart; Bonnell, John; Case, Antony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Koval, Andriy; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5dac

Parker Data Used; parker solar probe; Solar Probe Plus

Ion-scale Electromagnetic Waves in the Inner Heliosphere

Understanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA\textquoterights Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that t ...

Bowen, Trevor; Mallet, Alfred; Huang, Jia; Klein, Kristopher; Malaspina, David; Stevens, Michael; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chaston, C.; Chen, Christopher; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Howes, Gregory; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; McManus, Michael; Pulupa, Marc; Verniero, J.; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab6c65

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Parker Solar Probe Observations of a Dust Trail in the Orbit of (3200) Phaethon

We present the identification and preliminary analysis of a dust trail following the orbit of (3200) Phaethon as seen in white-light images recorded by the Wide-field Imager for Parker Solar Probe (WISPR) instrument on the NASA Parker Solar Probe (PSP) mission. During PSP\textquoterights first solar encounter in 2018 November, a dust trail following Phaethon\textquoterights orbit was visible for several days and crossing two fields of view. Preliminary analyses indicate this trail to have a visual magnitude of 15.8 \textp ...

Battams, Karl; Knight, Matthew; Kelley, Michael; Gallagher, Brendan; Howard, Russell; Stenborg, Guillermo;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab6c68

Astrophysics - Earth and Planetary Astrophysics; Parker Data Used; parker solar probe; Solar Probe Plus

CME-associated Energetic Ions at 0.23 au: Consideration of the Auroral Pressure Cooker Mechanism Operating in the Low Corona as a Possible Energization Process

Mitchell, D.~G.; Giacalone, J.; Allen, R.~C.; Hill, M.~E.; McNutt, R.~L.; McComas, D.~J.; Szalay, J.~R.; Schwadron, N.~A.; Rouillard, A.~P.; Bale, S.~B.; Chaston, C.~C.; Pulupa, M.~P.; Whittlesey, P.~L.; Kasper, J.~C.; MacDowall, R.~J.; Christian, E.~R.; Wiedenbeck, M.~E.; Matthaeus, W.~H.;

Published by: \apjs      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab63cc

Parker Data Used; 1491; 310; 1496; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere

In this work, we present the first results from the flux angle (FA) operation mode of the Faraday Cup instrument on board the Parker Solar Probe (PSP). The FA mode allows rapid measurements of phase space density fluctuations close to the peak of the proton velocity distribution function with a cadence of 293 Hz. This approach provides an invaluable tool for understanding kinetic-scale turbulence in the solar wind and solar corona. We describe a technique to convert the phase space density fluctuations into vector velocit ...

Vech, Daniel; Kasper, Justin; Klein, Kristopher; Huang, Jia; Stevens, Michael; Chen, Christopher; Case, Anthony; Korreck, Kelly; Bale, Stuart; Bowen, Trevor; Whittlesey, Phyllis; Livi, Roberto; Larson, Davin; Malaspina, David; Pulupa, Marc; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab60a2

Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Morphological Reconstruction of a Small Transient Observed by Parker Solar Probe on 2018 November 5

On 2018 November 5, about 24 hr before the first close perihelion passage of Parker Solar Probe (PSP), a coronal mass ejection (CME) entered the field of view of the inner detector of the Wide-field Imager for Solar PRobe (WISPR) instrument on board PSP, with the northward component of its trajectory carrying the leading edge of the CME off the top edge of the detector about four hours after its first appearance. We connect this event to a very small jetlike transient observed from 1 au by coronagraphs on both the SOlar a ...

Wood, Brian; Hess, Phillip; Howard, Russell; Stenborg, Guillermo; Wang, Yi-Ming;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5219

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

The Near-Sun Dust Environment: Initial Observations from Parker Solar Probe

The Parker Solar Probe (PSP) spacecraft has flown into the densest, previously unexplored, innermost region of our solar system\textquoterights zodiacal cloud. While PSP does not have a dedicated dust detector, multiple instruments on the spacecraft are sensitive to the effects of meteoroid bombardment. Here, we discuss measurements taken during PSP\textquoterights second orbit and compare them to models of the zodiacal cloud\textquoterights dust distribution. Comparing the radial impact rate trends and the timing and loc ...

Szalay, J.; y, Pokorn\; Bale, S.; Christian, E.; Goetz, K.; Goodrich, K.; Hill, M.; Kuchner, M.; Larsen, R.; Malaspina, D.; McComas, D.; Mitchell, D.; Page, B.; Schwadron, N.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab50c1

Astrophysics - Earth and Planetary Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe

Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local ef ...

Bandyopadhyay, Riddhi; Matthaeus, W.; Parashar, T.; Chhiber, R.; Ruffolo, D.; Goldstein, M.; Maruca, B.; Chasapis, A.; Qudsi, R.; McComas, D.; Christian, E.; Szalay, J.; Joyce, C.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; Wiedenbeck, M.; McNutt, R.; Desai, M.; Bale, Stuart; Bonnell, J.; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Velli, M.; Kasper, J.; Korreck, K.; Stevens, M.; Case, A.; Raouafi, N.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab6220

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe

A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS☉IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ̃0.3 particles (cm2 sr s MeV)-1, and was undetectable above backgro ...

Leske, R.; Christian, E.; Cohen, C.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Krimigis, S.; Labrador, A.; Malandraki, O.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Posner, A.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Vourlidas, A.; Bale, S.; MacDowall, R.; Pulupa, M.; Kasper, J.; Allen, R.; Case, A.; Korreck, K.; Livi, R.; Stevens, M.; Whittlesey, P.; Poduval, B.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5712

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe

A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS☉IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ̃0.3 particles (cm2 sr s MeV)-1, and was undetectable above backgro ...

Leske, R.; Christian, E.; Cohen, C.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Krimigis, S.; Labrador, A.; Malandraki, O.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Posner, A.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Vourlidas, A.; Bale, S.; MacDowall, R.; Pulupa, M.; Kasper, J.; Allen, R.; Case, A.; Korreck, K.; Livi, R.; Stevens, M.; Whittlesey, P.; Poduval, B.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5712

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model

Since its launch on 2018 August 12, Parker Solar Probe (PSP) has completed its first and second orbits around the Sun, having reached down to 35.7 solar radii at each perihelion. In anticipation of the exciting new data at such unprecedented distances, we have simulated the global 3D heliosphere using an MHD model coupled with a semi-empirical coronal model using the best available photospheric magnetograms as input. We compare our heliospheric MHD simulation results with in situ measurements along the PSP trajectory from ...

Kim, T.; Pogorelov, N.; Arge, C.; Henney, C.; Jones-Mecholsky, S.; Smith, W.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Korreck, K.; Stevens, M.; Case, A.; Whittlesey, P.; Livi, R.; Larson, D.; Klein, K.; Zank, G.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab58c9

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Properties of Suprathermal-through-energetic He Ions Associated with Stream Interaction Regions Observed over the Parker Solar Probe \textquoterights First Two Orbits

The Integrated Science Investigation of the Sun (IS☉IS) suite on board NASA\textquoterights Parker Solar Probe (PSP) observed six distinct enhancements in the intensities of suprathermal-through-energetic (\~0.03-3 MeV nucleon-1) He ions associated with corotating or stream interaction regions (CIR or SIR) during its first two orbits. Our results from a survey of the time histories of the He intensities, spectral slopes, and anisotropies and the event-averaged energy spectra during these events show the follo ...

Desai, M.; Mitchell, D.; Szalay, J.; Roelof, E.; Giacalone, J.; Hill, M.; McComas, D.; Christian, E.; Schwadron, N.; McNutt, R.; Wiedenbeck, M.; Joyce, C.; Cohen, C.; Ebert, R.; Dayeh, M.; Allen, R.; Davis, A.; Krimigis, S.; Leske, R.; Matthaeus, W.; Malandraki, O.; Mewaldt, R.; Labrador, A.; Stone, E.; Bale, S.; Pulupa, M.; MacDowall, R.; Kasper, J.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab65ef

Parker Data Used; parker solar probe; Solar Probe Plus

Properties of Suprathermal-through-energetic He Ions Associated with Stream Interaction Regions Observed over the Parker Solar Probe \textquoterights First Two Orbits

The Integrated Science Investigation of the Sun (IS☉IS) suite on board NASA\textquoterights Parker Solar Probe (PSP) observed six distinct enhancements in the intensities of suprathermal-through-energetic (\~0.03-3 MeV nucleon-1) He ions associated with corotating or stream interaction regions (CIR or SIR) during its first two orbits. Our results from a survey of the time histories of the He intensities, spectral slopes, and anisotropies and the event-averaged energy spectra during these events show the follo ...

Desai, M.; Mitchell, D.; Szalay, J.; Roelof, E.; Giacalone, J.; Hill, M.; McComas, D.; Christian, E.; Schwadron, N.; McNutt, R.; Wiedenbeck, M.; Joyce, C.; Cohen, C.; Ebert, R.; Dayeh, M.; Allen, R.; Davis, A.; Krimigis, S.; Leske, R.; Matthaeus, W.; Malandraki, O.; Mewaldt, R.; Labrador, A.; Stone, E.; Bale, S.; Pulupa, M.; MacDowall, R.; Kasper, J.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab65ef

Parker Data Used; parker solar probe; Solar Probe Plus

The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2

Magnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However, this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker Solar Probe, we measure the proton-scale break over a range of h ...

Duan, Die; Bowen, Trevor; Chen, Christopher; Mallet, Alfred; He, Jiansen; Bale, Stuart; Vech, Daniel; Kasper, J.; Pulupa, Marc; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab672d

Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2

Magnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However, this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker Solar Probe, we measure the proton-scale break over a range of h ...

Duan, Die; Bowen, Trevor; Chen, Christopher; Mallet, Alfred; He, Jiansen; Bale, Stuart; Vech, Daniel; Kasper, J.; Pulupa, Marc; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Stevens, Michael; Whittlesey, Phyllis;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab672d

Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe

The physical mechanisms that produce the slow solar wind are still highly debated. Parker Solar Probe\textquoterights (PSP\textquoterights) second solar encounter provided a new opportunity to relate in situ measurements of the nascent slow solar wind with white-light images of streamer flows. We exploit data taken by the Solar and Heliospheric Observatory, the Solar TErrestrial RElations Observatory (STEREO), and the Wide Imager on Solar Probe to reveal for the first time a close link between imaged streamer flows and th ...

Rouillard, Alexis; Kouloumvakos, Athanasios; Vourlidas, Angelos; Kasper, Justin; Bale, Stuart; Raouafi, Nour-Edine; Lavraud, Benoit; Howard, Russell; Stenborg, Guillermo; Stevens, Michael; Poirier, Nicolas; Davies, Jackie; Hess, Phillip; Higginson, Aleida; Lavarra, Michael; Viall, Nicholeen; Korreck, Kelly; Pinto, Rui; Griton, Lea; eville, Victor; Louarn, Philippe; Wu, Yihong; Dalmasse, K\; enot, Vincent; Case, Anthony; Whittlesey, Phyllis; Larson, Davin; Halekas, Jasper; Livi, Roberto; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, D.; Pulupa, M.; Bonnell, J.; de Witt, Dudok; Penou, Emmanuel;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab579a

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Solar Probe Plus

Seed Population Preconditioning and Acceleration Observed by the Parker Solar Probe

A series of solar energetic particle (SEP) events was observed by the Integrated Science Investigation of the Sun (IS☉IS) on the Parker Solar Probe (PSP) during the period from 2019 April 18 through 24. The PSP spacecraft was located near 0.48 au from the Sun on Parker spiral field lines that projected out to 1 au within ̃25\textdegree of the near-Earth spacecraft. These SEP events, though small compared to historically large SEP events, were among the largest observed thus far in the PSP mission and provide critical i ...

Schwadron, N.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; Cohen, C.; Cummings, A.; Davis, A.; de Wit, Dudok; de Wet, W.; Desai, M.; Joyce, C.; Goetz, K.; Giacalone, J.; Gorby, M.; Harvey, P.; Heber, B.; Hill, M.; Karavolos, M.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; Malandraki, O.; MacDowall, R.; Malaspina, D.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Mays, L.; Niehof, J.; Odstrcil, D.; Pulupa, M.; Poduval, B.; Rankin, J.; Roelof, E.; Stevens, M.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Winslow, R.; Whittlesey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5527

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Seed Population Preconditioning and Acceleration Observed by the Parker Solar Probe

A series of solar energetic particle (SEP) events was observed by the Integrated Science Investigation of the Sun (IS☉IS) on the Parker Solar Probe (PSP) during the period from 2019 April 18 through 24. The PSP spacecraft was located near 0.48 au from the Sun on Parker spiral field lines that projected out to 1 au within ̃25\textdegree of the near-Earth spacecraft. These SEP events, though small compared to historically large SEP events, were among the largest observed thus far in the PSP mission and provide critical i ...

Schwadron, N.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; Cohen, C.; Cummings, A.; Davis, A.; de Wit, Dudok; de Wet, W.; Desai, M.; Joyce, C.; Goetz, K.; Giacalone, J.; Gorby, M.; Harvey, P.; Heber, B.; Hill, M.; Karavolos, M.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; Malandraki, O.; MacDowall, R.; Malaspina, D.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Mays, L.; Niehof, J.; Odstrcil, D.; Pulupa, M.; Poduval, B.; Rankin, J.; Roelof, E.; Stevens, M.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Winslow, R.; Whittlesey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5527

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Seed Population Preconditioning and Acceleration Observed by the Parker Solar Probe

A series of solar energetic particle (SEP) events was observed by the Integrated Science Investigation of the Sun (IS☉IS) on the Parker Solar Probe (PSP) during the period from 2019 April 18 through 24. The PSP spacecraft was located near 0.48 au from the Sun on Parker spiral field lines that projected out to 1 au within ̃25\textdegree of the near-Earth spacecraft. These SEP events, though small compared to historically large SEP events, were among the largest observed thus far in the PSP mission and provide critical i ...

Schwadron, N.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; Cohen, C.; Cummings, A.; Davis, A.; de Wit, Dudok; de Wet, W.; Desai, M.; Joyce, C.; Goetz, K.; Giacalone, J.; Gorby, M.; Harvey, P.; Heber, B.; Hill, M.; Karavolos, M.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; Malandraki, O.; MacDowall, R.; Malaspina, D.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Mays, L.; Niehof, J.; Odstrcil, D.; Pulupa, M.; Poduval, B.; Rankin, J.; Roelof, E.; Stevens, M.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Winslow, R.; Whittlesey, P.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5527

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by Parker Solar Probe

The Energetic Particle Instrument-Low Energy (EPI-Lo) experiment has detected several weak, low-energy (̃30-300 keV nucleon-1) solar energetic particle (SEP) events during its first two closest approaches to the Sun, providing a unique opportunity to explore the sources of low-energy particle acceleration. As part of the Parker Solar Probe (PSP) Integrated Science Investigation of the Sun (IS☉IS) suite, EPI-Lo was designed to investigate the physics of energetic particles; however, in the special lowest-ener ...

Hill, M.; Mitchell, D.; Allen, R.; de Nolfo, G.; Vourlidas, A.; Brown, L.; Jones, S.; McComas, D.; McNutt, R.; Mitchell, J.; Szalay, J.; Wallace, S.; Arge, C.; Christian, E.; Cohen, C.; Crew, A.; Desai, M.; Giacalone, J.; Henney, C.; Joyce, C.; Krimigis, S.; Leske, R.; Mewaldt, R.; Nelson, K.; Roelof, E.; Schwadron, N.; Wiedenbeck, M.;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab643d

Parker Data Used; parker solar probe; Solar Probe Plus



  1      2      3      4      5