PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 461 entries in the Bibliography.


Showing entries from 451 through 461


2013

Technology development for the Solar Probe Plus Faraday Cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by:       Published on:

YEAR: 2013     DOI: 10.1117/12.2024983

Parker Data Used

2012

Interchange Reconnection in a Turbulent Corona

Rappazzo, A.~F.; Matthaeus, W.~H.; Ruffolo, D.; Servidio, S.; Velli, M.;

Published by: \apjl      Published on: 10/2012

YEAR: 2012     DOI: 10.1088/2041-8205/758/1/L14

Parker Data Used; magnetic reconnection; magnetohydrodynamics: MHD; Solar wind; Sun: corona; Sun: magnetic topology; turbulence; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Short wavelength electromagnetic perturbations excited near the Solar Probe Plus spacecraft in the inner heliosphere: 2.5D hybrid modeling

A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was ...

Lipatov, Alexander; Sittler, Edward; Hartle, Richard; Cooper, John;

Published by: Planetary and Space Science      Published on: 03/2012

YEAR: 2012     DOI: 10.1016/j.pss.2011.12.008

Alfv\ en waves; Induced magnetospheres; Magnetic barrier; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Spacecraft; Whistlers

Thermal radiative properties of carbon materials under high temperature and vacuum ultra-violet (VUV) radiation for the heat shield of the Solar Probe Plus mission

The Solar Probe Plus (SP+) mission will approach the Sun as close as 9.5 solar radii in order to understand the origin of the solar corona heating and the acceleration of the solar wind. Submitted to such extreme environmental conditions, a thermal protection system is considered to protect the payload of the SP+ spacecraft. Carbon-based materials are good candidate to fulfill this role and critical point remains the equilibrium temperature reached at perihelion by the heat shield. In this paper, experimental results obta ...

Balat-Pichelin, M.; Eck, J.; Sans, J.L.;

Published by: Applied Surface Science      Published on: 01/2012

YEAR: 2012     DOI: 10.1016/j.apsusc.2011.10.142

Carbon material; High temperature; Ion etching; Parker Data Used; Solar Probe Plus; Thermal radiative properties; VUV radiation

2011

Concentrated Solar Energy to Study High Temperature Materials for Space and Energy

In this paper, the concentrated solar energy is used as a source of high temperatures to study the physical and chemical behaviors and intrinsic properties of refractory materials. The atmospheres surrounding the materials have to be simulated in experimental reactors to characterize the materials in real environments. Several application fields are concerned such as the aerospace and the energy fields: examples of results will be given for the heat shield of the Solar Probe Plus mission (NASA) for the SiC/SiC material that ...

Charpentier, Ludovic; Dawi, Kamel; Eck, Julien; Pierrat, Baptiste; Sans, Jean-Louis; Balat-Pichelin, Marianne;

Published by: JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME      Published on: 08/2011

YEAR: 2011     DOI: 10.1115/1.4004241

Parker Data Used

CORONAL PLUMES IN THE FAST SOLAR WIND

The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfv\ en waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of t ...

Velli, Marco; Lionello, Roberto; Linker, Jon; c, Zoran;

Published by: The Astrophysical Journal      Published on: 07/2011

YEAR: 2011     DOI: 10.1088/0004-637X/736/1/32

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

CORONAL PLUMES IN THE FAST SOLAR WIND

The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfv\ en waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of t ...

Velli, Marco; Lionello, Roberto; Linker, Jon; c, Zoran;

Published by: The Astrophysical Journal      Published on: 07/2011

YEAR: 2011     DOI: 10.1088/0004-637X/736/1/32

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

CORONAL PLUMES IN THE FAST SOLAR WIND

The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfv\ en waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of t ...

Velli, Marco; Lionello, Roberto; Linker, Jon; c, Zoran;

Published by: The Astrophysical Journal      Published on: 07/2011

YEAR: 2011     DOI: 10.1088/0004-637X/736/1/32

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Experimental study of carbon materials behavior under high temperature and VUV radiation: Application to Solar Probe+ heat shield

The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the ...

Eck, J.; Sans, J.-L.; Balat-Pichelin, M.;

Published by: Applied Surface Science      Published on: 02/2011

YEAR: 2011     DOI: 10.1016/j.apsusc.2010.10.139

Parker Data Used; parker solar probe; Solar Probe Plus

2010

Combined effect of high temperature and VUV radiation on carbon-based materials

For the next exploration of the sun, missions like Solar Probe+ (NASA) or Phoibos (ESA) will be launched to answer to fundamental questions on the solar corona heating and solar winds origin. Such solar probes missions that will pass very close to the sun, respectively at 9.5 and 4 solar radii (Rs), need thermal shield to protect the payload and the instrumentation. Carbon/carbon composites can withstand the severe environment encountered during the pass of the sun and have to be studied to understand their physico-chemical ...

Eck, J.; Sans, J.L.; Balat-Pichelin, M.;

Published by: ECS Transactions      Published on:

YEAR: 2010     DOI:

Carbon; Carbon carbon composites; Heat shielding; NASA; Probes; Space flight; Parker Engineering

Ceramic coatings for the solar probe plus mission

A study was conducted to develop the coatings needed to protect the Solar Probe Plus Thermal Protection System (TPS) from the harsh environment. The TPS encountered harsh environment during its mission close to the sun, facing significant solar fluxes. The first part of the study addressed the way a coating s microstructure affected its optical properties and the way coatings were designed to maintain the right microstructure over temperature. The study was led by a researcher from the Advanced Technology Laboratory of the W ...

Mehoke, D.; Congdon, E.; , Drewry; Eddins, C.; Deacon, R.; Wolf, T.; Hahn, D.; King, D.; Nagle, D.; Buchta, M.; Zhang, D.; Hemker, K.; Spicer, J.; Jones, J.; Ryan, S.; Schlichter, G.;

Published by: Johns Hopkins APL Technical Digest (Applied Physics Laboratory)      Published on:

YEAR: 2010     DOI:

Grain growth; Microstructure; Optical properties; Probes; Parker Engineering



  5      6      7      8      9      10