Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2016 |
The first in situ measurements of electric and magnetic fields in the near-Sun environment (\< 0.25 AU from the Sun) will be made by the FIELDS instrument suite on the Solar Probe Plus mission. The Digital Fields Board (DFB) is an electronics board within FIELDS that performs analog and digital signal processing, as well as digitization, for signals between DC and 60 kHz from five voltage sensors and four search coil magnetometer channels. These nine input signals are processed on the DFB into 26 analog data streams. A ... Malaspina, David; Ergun, Robert; Bolton, Mary; Kien, Mark; Summers, David; Stevens, Ken; Yehle, Alan; Karlsson, Magnus; Hoxie, Vaughn; Bale, Stuart; Goetz, Keith; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1002/2016JA022344 electric and magnetic fields; instrumentation; Parker Data Used; parker solar probe; signal processing; solar probe; Solar Probe Plus; Solar wind |
Solar Probe Plus (SPP) Wrap Around Automated Testing The Solar Probe Plus (SPP) mission, under NASA s Living with a Star program, will fly a spacecraft (S/C) through the sun s outer corona. The mission will gather data on the processes of coronal heating, solar wind acceleration, and production, evolution and transport of solar energetic particles. The spacecraft has an Electrical Power System or EPS that has to undergo testing before delivery to the spacecraft for integration and testing. The specific unit to be delivered is called the Power System Electronic box or PSE. The ... Published by: AUTOTESTCON (Proceedings) Published on: Automation; Digital signal processors; Electric batteries; Electric power systems; Engines; Environmental testing; NASA; Probes; signal processing; Solar cell arrays; Space flight; Spacecraft; Spacecraft power supplies; Telemetering equipment; Testbeds; Wings; Parker Engineering |
The Frontier software-defined radio for the solar probe plus mission The latest adaptation of the Frontier Radio, an X/Ka-band deep space implementation, has been transitioned into a finished product for Solar Probe Plus (SPP) and future missions. Leveraging the technology readiness level (TRL) 9 software-defined radio (SDR) platform successfully flown on the Van Allen Probes (VAP) mission, the Frontier Radio now brings a low-power, low-mass, yet highly radiation-tolerant and robust SDR to deep space applications. This implementation brings with it a suite of enhanced capabilities and improve ... Haskins, Christopher; Angert, Matthew; Sheehi, Joseph; Millard, Wesley; Adams, Norman; Hennawy, Joseph; Published by: IEEE Aerospace Conference Proceedings Published on: Analog circuits; Application programs; Firmware; Interplanetary flight; Ionizing radiation; Manufacture; Power amplifiers; Probes; radio; radio receivers; signal processing; Space applications; Parker Engineering |
2014 |
Solar probe plus (SPP) dynamic solar array simulator The Solar Probe Plus (SPP) mission, under NASA’s Living With a Star program, will fly a spacecraft (S/C) through the sun’s outer corona with orbit perihelia that gradually approach as close as 9.86 solar radii from the center of the sun. The mission will gather data on the processes of coronal heating, solar wind acceleration, and production, evolution, and transport of solar energetic particles. The S/C is powered by two actively cooled photovoltaic solar array (S/A) wings. Because of the extreme environments ne ... Published by: 12th International Energy Conversion Engineering Conference, IECEC 2014 Published on: Attitude control; Control theory; Digital signal processors; Electric power systems; Flight control systems; MATLAB; NASA; Orbits; Probes; signal processing; Simulators; Software testing; Solar cell arrays; Space flight; Spacecraft power supplies; Vibrations (mechanical); Wings; Parker Engineering |
1