PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2019

Whistler Fan Instability Driven by Strahl Electrons in the Solar Wind

Vasko, I.~Y.; Krasnoselskikh, V.; Tong, Y.; Bale, S.~D.; Bonnell, J.~W.; Mozer, F.~S.;

Published by: \apjl      Published on: 02/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab01bd

Parker Data Used; conduction; instabilities; plasmas; scattering; Solar wind; waves

Dissipation Scale Lengths of Solar Wind Turbulence

Raja, Sasikumar; Subramanian, Prasad; Ingale, Madhusudan; Ramesh, R.;

Published by: \apj      Published on: 02/2019

YEAR: 2019     DOI: 10.3847/1538-4357/aafd33

occultations; scattering; Solar wind; Sun: corona; turbulence; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

2018

Characterization of the White-light Brightness of the F-corona between 5\textdegree and 24\textdegree Elongation

Stenborg, Guillermo; Howard, Russell; Stauffer, Johnathan;

Published by: \apj      Published on: 08/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aacea3

Parker Data Used; methods: data analysis; scattering; Sun: corona; techniques: image processing; zodiacal dust

Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au

Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimatin ...

Graham, G.; Rae, I.; Owen, C.; Walsh, A.;

Published by: The Astrophysical Journal      Published on: 03/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aaaf1b

parker solar probe; plasmas; scattering; Solar Probe Plus; Solar wind; Sun: heliosphere

2017

Charged Particle Diffusion in Isotropic Random Magnetic Fields

Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D.; Matthaeus, W.~H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Parashar, T.~N.; Chhiber, R.;

Published by: \apj      Published on: 03/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa603a

Parker Data Used; astroparticle physics; cosmic rays; diffusion; magnetic fields; scattering; turbulence; Physics - Space Physics; Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics

2016

SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION

Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, I.e., the \textquotedblleftcollisional age\textquotedblright, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enable ...

Chhiber, R; Usmanov, AV; Matthaeus, WH; Goldstein, ML;

Published by: The Astrophysical Journal      Published on: 04/2016

YEAR: 2016     DOI: 10.3847/0004-637X/821/1/34

magnetohydrodynamics: MHD; methods: numerical; parker solar probe; plasmas; scattering; Solar Probe Plus; Solar wind; turbulence



  1