Notice:
|
Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2022 |
Quasi-Thermal Noise (QTN) spectroscopy is a reliable diagnostic routinely used for measuring electron density and temperature in space plasmas. The observed spectrum depends on both antenna geometry and plasma kinetic properties. Parker solar probe (PSP), launched in 2018, is equipped with an antenna system consisting of two linear dipoles with a significant gap between the antenna arms. Such a configuration, not utilized on previous missions, cannot be completely described by current models of the antenna response function. ... c, Mihailo; c, Antonije; Klein, Kristopher; c, Milan; Issautier, Karine; Liu, Mingzhe; Pulupa, Marc; Bale, Stuart; Halekas, Jasper; McManus, Michael; Published by: Journal of Geophysical Research (Space Physics) Published on: apr YEAR: 2022   DOI: 10.1029/2021JA030182 Parker Data Used; quasi-thermal noise; Solar wind; antenna response |
2020 |
Plasma Waves in Space: The Importance of Properly Accounting for the Measuring Device Electric fields are generally measured or calculated using two intuitive assumptions: (1) the electric field equals the voltage divided by the antenna length when the antenna is electromagnetically short (2) the antenna responds best to electric field along its length. Both assumptions are often incorrect for electrostatic fields because they scale as the Debye length or as the electron gyroradius, which may be smaller than the antenna length. Taking into account this little-known fact enables us to complete or correct se ... Meyer-Vernet, Nicole; Moncuquet, Michel; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2020 YEAR: 2020   DOI: 10.1029/2019JA027723 electric antennas; parker solar probe; plasma waves; quasi-thermal noise; Solar Probe Plus; Space plasmas |
2017 |
The Radio Frequency Spectrometer (RFS) is a two-channel digital receiver and spectrometer, which will make remote sensing observations of radio waves and in situ measurements of electrostatic and electromagnetic fluctuations in the solar wind. A part of the FIELDS suite for Solar Probe Plus (SPP), the RFS is optimized for measurements in the inner heliosphere, where solar radio bursts are more intense and the plasma frequency is higher compared to previous measurements at distances of 1 AU or greater. The inputs to the RF ... Pulupa, M.; Bale, S.; Bonnell, J.; Bowen, T.; Carruth, N.; Goetz, K.; Gordon, D.; Harvey, P.; Maksimovic, M.; inez-Oliveros, J.; Moncuquet, M.; Saint-Hilaire, P.; Seitz, D.; Sundkvist, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2016JA023345 electric field; FIELDS; magnetic field; Parker Data Used; parker solar probe; quasi-thermal noise; radio; Solar Probe Plus |
1