PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 44 entries in the Bibliography.


Showing entries from 1 through 44


2021

Parker solar probe observations of helical structures as boundaries for energetic particles

Energetic particle transport in the interplanetary medium is known to be affected by magnetic structures. It has been demonstrated for solar energetic particles in near-Earth orbit studies, and also for the more energetic cosmic rays. In this paper, we show observational evidence that intensity variations of solar energetic particles can be correlated with the occurrence of helical magnetic flux tubes and their boundaries. The analysis is carried out using data from Parker Solar Probe orbit 5, in the period 2020 May 24 to Ju ...

Pecora, F.; Servidio, S.; Greco, A.; Matthaeus, W.~H.; McComas, D.~J.; Giacalone, J.; Joyce, C.~J.; Getachew, T.; Cohen, C.~M.~S.; Leske, R.~A.; Wiedenbeck, M.~E.; McNutt, R.~L.; Hill, M.~E.; Mitchell, D.~G.; Christian, E.~R.; Roelof, E.~C.; Schwadron, N.~A.; Bale, S.~D.;

Published by: \mnras      Published on: sep

YEAR: 2021     DOI: 10.1093/mnras/stab2659

magnetic fields; plasmas; Sun: magnetic fields; Sun: solar wind; Sun: particle emission; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

A powerful machine learning technique to extract proton core, beam, and \ensuremath\alpha-particle parameters from velocity distribution functions in space plasmas

Context. The analysis of the thermal part of velocity distribution functions (VDFs) is fundamentally important for understanding the kinetic physics that governs the evolution and dynamics of space plasmas. However, calculating the proton core, beam, and \ensuremath\alpha-particle parameters for large data sets of VDFs is a time-consuming and computationally demanding process that always requires supervision by a human expert. \ Aims: We developed a machine learning tool that can extract proton core, beam, and \ensuremath\al ...

Vech, D.; Stevens, M.~L.; Paulson, K.~W.; Malaspina, D.~M.; Case, A.~W.; Klein, K.~G.; Kasper, J.~C.;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202141063

Parker Data Used; turbulence; plasmas; waves; methods: statistical; Physics - Space Physics; Astrophysics - Instrumentation and Methods for Astrophysics; Physics - Plasma Physics

Flux conservation, radial scalings, Mach numbers, and critical distances in the solar wind: magnetohydrodynamics and Ulysses observations

One of the key challenges in solar and heliospheric physics is to understand the acceleration of the solar wind. As a super-sonic, super-Alfv\ enic plasma flow, the solar wind carries mass, momentum, energy, and angular momentum from the Sun into interplanetary space. We present a framework based on two-fluid magnetohydrodynamics to estimate the flux of these quantities based on spacecraft data independent of the heliocentric distance of the location of measurement. Applying this method to the Ulysses dataset allows us to st ...

Verscharen, Daniel; Bale, Stuart; Velli, Marco;

Published by: \mnras      Published on: jul

YEAR: 2021     DOI: 10.1093/mnras/stab2051

Solar wind; Sun: heliosphere; Magnetohydrodynamics; plasmas; methods: data analysis

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used

Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind

Context. Recent studies of the solar wind sunward of 0.25 AU reveal that it contains quiescent regions, with low-amplitude plasma and magnetic field fluctuations, and a magnetic field direction similar to the Parker spiral. The quiescent regions are thought to have a more direct magnetic connection to the solar corona than other types of solar wind, suggesting that waves or instabilities in the quiescent regions are indicative of the early evolution of the solar wind as it escapes the corona. The quiescent solar wind regions ...

Malaspina, D.; Wilson, L.; Ergun, R.; Bale, S.; Bonnell, J.; Goodrich, K.; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Halekas, J.; Case, A.; Kasper, J.; Larson, D.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202140449

Solar wind; plasmas; instabilities; waves; Parker Data Used

Applicability of Taylor s hypothesis during Parker Solar Probe perihelia

We investigate the validity of Taylor s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the fir ...

Perez, Jean; Bourouaine, Sofiane; Chen, Christopher; Raouafi, Nour;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039879

Solar wind; Sun: heliosphere; turbulence; magnetohydrodynamics (MHD); plasmas; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe


Aims: We studied the properties and occurrence of narrowband whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe.
Methods: We used Digital Fields Board band-pass filtered (BPF) data from FIELDS to detect the signatures of whistler waves. Additionally parameters derived from the particle distribution functions measured by the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite were used to investigate the plasm ...

Jagarlamudi, V.; de Wit, Dudok; Froment, C.; Krasnoselskikh, V.; Larosa, A.; Bercic, L.; Agapitov, O.; Halekas, J.; Kretzschmar, M.; Malaspina, D.; Moncuquet, M.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039808

waves; scattering; plasmas; Sun: heliosphere; magnetic fields; Physics - Space Physics; Parker Data Used

2020

The evolution of inverted magnetic fields through the inner heliosphereABSTRACT

Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfv\ enic, HMF inversions in the inner heliosphere, known as \textquoterightswitchbacks\textquoteright, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. ...

Macneil, Allan; Owens, Mathew; Wicks, Robert; Lockwood, Mike; Bentley, Sarah; Lang, Matthew;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 04/2020

YEAR: 2020     DOI: 10.1093/mnras/staa951

Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: heliosphere

Highly Alfv\ enic slow solar wind at 0.3 au during a solar minimum: Helios insights for Parker Solar Probe and Solar Orbiter

Alfv\ enic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfv\ enicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfv\ enic. Here we compare three different regimes of solar wind, in terms of Alfv\ enic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfv\ enic slow intervals share some common characteristics. This would suggest a simila ...

Perrone, D.; D\textquoterightAmicis, R.; De Marco, R.; Matteini, L.; Stansby, D.; Bruno, R.; Horbury, T.;

Published by: Astronomy \& Astrophysics      Published on: 01/2020

YEAR: 2020     DOI: 10.1051/0004-6361/201937064

parker solar probe; plasmas; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; turbulence

Spectral signatures of recursive magnetic field reconnection

Tenerani, A.; Velli, M.;

Published by: \mnras      Published on: 01/2020

YEAR: 2020     DOI: 10.1093/mnras/stz3310

Parker Data Used; magnetic reconnection; MHD; plasmas; turbulence; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

2019

Self-induced Scattering of Strahl Electrons in the Solar Wind

We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability thresho ...

Verscharen, Daniel; Chandran, Benjamin; Jeong, Seong-Yeop; Salem, Chadi; Pulupa, Marc; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 12/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab4c30

Astrophysics - Solar and Stellar Astrophysics; instabilities; parker solar probe; Physics - Geophysics; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence; waves

Dynamic Evolution of Current Sheets, Ideal Tearing, Plasmoid Formation and Generalized Fractal Reconnection Scaling Relations

Singh, K.~A.~P.; Pucci, Fulvia; Tenerani, Anna; Shibata, Kazunari; Hillier, Andrew; Velli, Marco;

Published by: \apj      Published on: 08/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab2b99

Parker Data Used; magnetic reconnection; magnetohydrodynamics: MHD; plasmas; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Electron Energy Partition across Interplanetary Shocks. I. Methodology and Data Product

Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine;

Published by: \apjs      Published on: 07/2019

YEAR: 2019     DOI: 10.3847/1538-4365/ab22bd

Parker Data Used; methods: numerical; methods: statistical; plasmas; shock waves; Solar wind; Sun: coronal mass ejections: CMEs; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Whistler Fan Instability Driven by Strahl Electrons in the Solar Wind

Vasko, I.~Y.; Krasnoselskikh, V.; Tong, Y.; Bale, S.~D.; Bonnell, J.~W.; Mozer, F.~S.;

Published by: \apjl      Published on: 02/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab01bd

Parker Data Used; conduction; instabilities; plasmas; scattering; Solar wind; waves

The Fluid-like and Kinetic Behavior of Kinetic Alfv\ en Turbulence in Space Plasma

Kinetic Alfv\ en waves (KAWs) are the short-wavelength extension of the magnetohydrodynamics Alfv\ en-wave branch in the case of highly oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, a collisional two-fluid theory and a collisionless linear kinetic theory, to obtain predictions for the KAW polarizations depending on\ βp\ (the ratio of the proton th ...

Wu, Honghong; Verscharen, Daniel; Wicks, Robert; Chen, Christopher; He, Jiansen; Nicolaou, Georgios;

Published by: The Astrophysical Journal      Published on: 01/2019

YEAR: 2019     DOI: 10.3847/1538-4357/aaef77

magnetohydrodynamics: MHD; plasmas; solar-terrestrial relations; turbulence; waves; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

2018

Nonlinear Firehose Relaxation and Constant-B Field Fluctuations

Tenerani, Anna; Velli, Marco;

Published by: \apjl      Published on: 11/2018

YEAR: 2018     DOI: 10.3847/2041-8213/aaec01

Parker Data Used; instabilities; plasmas; Solar wind; waves; Physics - Plasma Physics

Incompressive Energy Transfer in the Earth\textquoterights Magnetosheath: Magnetospheric Multiscale Observations

Bandyopadhyay, Riddhi; Chasapis, A.; Chhiber, R.; Parashar, T.~N.; Matthaeus, W.~H.; Shay, M.~A.; Maruca, B.~A.; Burch, J.~L.; Moore, T.~E.; Pollock, C.~J.; Giles, B.~L.; Paterson, W.~R.; Dorelli, J.; Gershman, D.~J.; Torbert, R.~B.; Russell, C.~T.; Strangeway, R.~J.;

Published by: \apj      Published on: 10/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aade04

Parker Data Used; magnetohydrodynamics: MHD; planets and satellites: magnetic fields; plasmas; Solar wind; turbulence; Physics - Space Physics

Solar Wind Turbulence Studies Using MMS Fast Plasma Investigation Data

Bandyopadhyay, Riddhi; Chasapis, A.; Chhiber, R.; Parashar, T.~N.; Maruca, B.~A.; Matthaeus, W.~H.; Schwartz, S.~J.; Eriksson, S.; Le Contel, O.; Breuillard, H.; Burch, J.~L.; Moore, T.~E.; Pollock, C.~J.; Giles, B.~L.; Paterson, W.~R.; Dorelli, J.; Gershman, D.~J.; Torbert, R.~B.; Russell, C.~T.; Strangeway, R.~J.;

Published by: \apj      Published on: 10/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aade93

Parker Data Used; magnetohydrodynamics: MHD; methods: data analysis; methods: statistical; plasmas; Solar wind; turbulence; Physics - Space Physics

Dependence of Kinetic Plasma Turbulence on Plasma \ensuremath\beta

Parashar, Tulasi; Matthaeus, William; Shay, Michael;

Published by: \apjl      Published on: 09/2018

YEAR: 2018     DOI: 10.3847/2041-8213/aadb8b

Parker Data Used; plasmas; Solar wind; turbulence; Physics - Space Physics; Astrophysics - Astrophysics of Galaxies; Physics - Plasma Physics

Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au

Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimatin ...

Graham, G.; Rae, I.; Owen, C.; Walsh, A.;

Published by: The Astrophysical Journal      Published on: 03/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aaaf1b

parker solar probe; plasmas; scattering; Solar Probe Plus; Solar wind; Sun: heliosphere

2017

The Parametric Instability of Alfv\ en Waves: Effects of Temperature Anisotropy

Tenerani, Anna; Velli, Marco; Hellinger, Petr;

Published by: \apj      Published on: 12/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa9bef

Parker Data Used; instabilities; plasmas; Sun: heliosphere; waves; Physics - Space Physics

A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun

The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relax ...

Kasper, J.; Klein, K.; Weber, T.; Maksimovic, M.; Zaslavsky, A.; Bale, S.; Maruca, B.; Stevens, M.; Case, A.;

Published by: The Astrophysical Journal      Published on: 11/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa84b1

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence

Fast Magnetic Reconnection: \textquotedblleftIdeal\textquotedblright Tearing and the Hall Effect

Pucci, Fulvia; Velli, Marco; Tenerani, Anna;

Published by: \apj      Published on: 08/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa7b82

Parker Data Used; magnetic reconnection; magnetohydrodynamics: MHD; plasmas; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Revisiting a Classic: The Parker-Moffatt Problem

Pezzi, O.; Parashar, T.~N.; Servidio, S.; Valentini, F.; asconez, C.~L.; Yang, Y.; Malara, F.; Matthaeus, W.~H.; Veltri, P.;

Published by: \apj      Published on: 01/2017

YEAR: 2017     DOI: 10.3847/1538-4357/834/2/166

Parker Data Used; magnetohydrodynamics: MHD; plasmas; Solar wind; Physics - Space Physics

2016

Propinquity of Current and Vortex Structures: Effects on Collisionless Plasma Heating

Parashar, Tulasi; Matthaeus, William;

Published by: \apj      Published on: 11/2016

YEAR: 2016     DOI: 10.3847/0004-637X/832/1/57

Parker Data Used; plasmas; Solar wind; Sun: heliosphere; turbulence; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Turbulence and Proton-Electron Heating in Kinetic Plasma

Matthaeus, William; Parashar, Tulasi; Wan, Minping; Wu, P.;

Published by: \apjl      Published on: 08/2016

YEAR: 2016     DOI: 10.3847/2041-8205/827/1/L7

Parker Data Used; galaxies: ISM; ISM: kinematics and dynamics; plasmas; solar─terrestrial relations; Solar wind; turbulence

MEASURING COLLISIONLESS DAMPING IN HELIOSPHERIC PLASMAS USING FIELD\textendashPARTICLE CORRELATIONS

An innovative field-particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribut ...

Klein, K.; Howes, G.;

Published by: The Astrophysical Journal      Published on: 08/2016

YEAR: 2016     DOI: 10.3847/2041-8205/826/2/L30

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; turbulence; waves

Variance Anisotropy in Kinetic Plasmas

Parashar, Tulasi; Oughton, Sean; Matthaeus, William; Wan, Minping;

Published by: \apj      Published on: 06/2016

YEAR: 2016     DOI: 10.3847/0004-637X/824/1/44

Parker Data Used; plasmas; Solar wind; turbulence; waves

SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION

Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, I.e., the \textquotedblleftcollisional age\textquotedblright, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enable ...

Chhiber, R; Usmanov, AV; Matthaeus, WH; Goldstein, ML;

Published by: The Astrophysical Journal      Published on: 04/2016

YEAR: 2016     DOI: 10.3847/0004-637X/821/1/34

magnetohydrodynamics: MHD; methods: numerical; parker solar probe; plasmas; scattering; Solar Probe Plus; Solar wind; turbulence

EVOLUTION OF THE PROTON VELOCITY DISTRIBUTION DUE TO STOCHASTIC HEATING IN THE NEAR-SUN SOLAR WIND

We investigate how the proton distribution function evolves when the protons undergo stochastic heating by strong, low-frequency, Alfv\ en-wave turbulence under the assumption that β is small. We apply our analysis to protons undergoing stochastic heating in the supersonic fast solar wind and obtain proton distributions at heliocentric distances ranging from 4 to 30 solar radii. We find that the proton distribution develops non-Gaussian structure with a flat core and steep tail. For r\gt 5 RS, the proton distr ...

Klein, Kristopher; Chandran, Benjamin;

Published by: The Astrophysical Journal      Published on: 03/2016

YEAR: 2016     DOI: 10.3847/0004-637X/820/1/47

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; plasmas; Solar Probe Plus; Solar wind; turbulence; waves

2015

Transition from Kinetic to MHD Behavior in a Collisionless Plasma

Parashar, Tulasi; Matthaeus, William; Shay, Michael; Wan, Minping;

Published by: \apj      Published on: 10/2015

YEAR: 2015     DOI: 10.1088/0004-637X/811/2/112

Parker Data Used; magnetohydrodynamics: MHD; plasmas; Solar wind; turbulence

ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE

The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric dista ...

Comişel, H.; Motschmann, U.; üchner, J.; Narita, Y.; Nariyuki, Y.;

Published by: The Astrophysical Journal      Published on: 10/2015

YEAR: 2015     DOI: 10.1088/0004-637X/812/2/175

parker solar probe; plasmas; Solar Probe Plus; Solar wind; turbulence; waves

Radial Variation of the Solar Wind Proton Temperature: Heat Flow or Addition?

Scudder, J.~D.;

Published by: \apj      Published on: 08/2015

YEAR: 2015     DOI: 10.1088/0004-637X/809/2/126

Parker Data Used; conduction; equation of state; hydrodynamics; plasmas; Solar wind; waves

KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg \& Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1\% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric d ...

Isenberg, Philip; Vasquez, Bernard;

Published by: The Astrophysical Journal      Published on: 08/2015

YEAR: 2015     DOI: 10.1088/0004-637X/808/2/119

parker solar probe; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence; waves

Intermittency and Alignment in Strong RMHD Turbulence

Chandran, B.~D.~G.; Schekochihin, A.~A.; Mallet, A.;

Published by: \apj      Published on: 07/2015

YEAR: 2015     DOI: 10.1088/0004-637X/807/1/39

Parker Data Used; magnetohydrodynamics: MHD; plasmas; Solar wind; Sun: chromosphere; Sun: corona; turbulence; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Resistive Magnetohydrodynamics Simulations of the Ideal Tearing Mode

Landi, S.; Del Zanna, L.; Papini, E.; Pucci, F.; Velli, M.;

Published by: \apj      Published on: 06/2015

YEAR: 2015     DOI: 10.1088/0004-637X/806/1/131

Parker Data Used; magnetohydrodynamics: MHD; magnetic reconnection; methods: numerical; plasmas; Sun: magnetic fields; Astrophysics - Solar and Stellar Astrophysics

A MODIFIED VERSION OF TAYLOR\textquoterightS HYPOTHESIS FOR SOLAR PROBE PLUS OBSERVATIONS

The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10 R. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor\textquoterights \textquotedblleftfrozen turbulence\textquotedblright hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfv\ en speed, and Taylor\text ...

Klein, Kristopher; Perez, Jean; Verscharen, Daniel; Mallet, Alfred; Chandran, Benjamin;

Published by: The Astrophysical Journal      Published on: 03/2015

YEAR: 2015     DOI: 10.1088/2041-8205/801/1/L18

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence

2014

Generating Synthetic Magnetic Field Intermittency Using a Minimal Multiscale Lagrangian Mapping Approach

Subedi, P.; Chhiber, R.; Tessein, J.~A.; Wan, M.; Matthaeus, W.~H.;

Published by: \apj      Published on: 12/2014

YEAR: 2014     DOI: 10.1088/0004-637X/796/2/97

Parker Data Used; magnetohydrodynamics: MHD; plasmas; turbulence

THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE

Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfv\ enic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a ...

Klein, K.; Howes, G.; TenBarge, J.;

Published by: The Astrophysical Journal      Published on: 08/2014

YEAR: 2014     DOI: 10.1088/2041-8205/790/2/L20

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; turbulence; waves

Role of Transients in the Sustainability of Solar Coronal Plumes

Raouafi, N.; Stenborg, G.;

Published by: \apj      Published on: 06/2014

YEAR: 2014     DOI: 10.1088/0004-637X/787/2/118

Parker Data Used; plasmas; Sun: activity; Sun: corona; Sun: magnetic fields; Sun: UV radiation

Proton Kinetic Effects in Vlasov and Solar Wind Turbulence

Servidio, S.; Osman, K.~T.; Valentini, F.; Perrone, D.; Califano, F.; Chapman, S.; Matthaeus, W.~H.; Veltri, P.;

Published by: \apjl      Published on: 02/2014

YEAR: 2014     DOI: 10.1088/2041-8205/781/2/L27

Parker Data Used; magnetic fields; plasmas; Solar wind; turbulence; Physics - Space Physics

2013

Stochastic Heating, Differential Flow, and the Alpha-to-proton Temperature Ratio in the Solar Wind

Chandran, B.~D.~G.; Verscharen, D.; Quataert, E.; Kasper, J.~C.; Isenberg, P.~A.; Bourouaine, S.;

Published by: \apj      Published on: 10/2013

YEAR: 2013     DOI: 10.1088/0004-637X/776/1/45

Parker Data Used; plasmas; Solar wind; Sun: corona; turbulence; waves; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Association of Suprathermal Particles with Coherent Structures and Shocks

Tessein, J.~A.; Matthaeus, W.~H.; Wan, M.; Osman, K.~T.; Ruffolo, D.; Giacalone, J.;

Published by: \apjl      Published on: 10/2013

YEAR: 2013     DOI: 10.1088/2041-8205/776/1/L8

Parker Data Used; acceleration of particles; magnetohydrodynamics: MHD; plasmas; shock waves; Solar wind

Technology development for the solar probe plus faraday cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2013     DOI:

plasmas; Solar wind; Parker Engineering



  1