Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2022 |
First Results From the SCM Search-Coil Magnetometer on Parker Solar Probe Parker Solar Probe is the first mission to probe in situ the innermost heliosphere, revealing an exceptionally dynamic and structured outer solar corona. Its payload includes a search-coil magnetometer (SCM) that measures up to three components of the fluctuating magnetic field between 3 Hz and 1 MHz. After more than 3 years of operation, the SCM has revealed a multitude of different wave phenomena in the solar wind. Here we present an overview of some of the discoveries made so far. These include oblique and sunward propaga ... de Wit, Dudok; Krasnoselskikh, V.~V.; Agapitov, O.; Froment, C.; Larosa, A.; Bale, S.~D.; Bowen, T.; Goetz, K.; Harvey, P.; Jannet, G.; Kretzschmar, M.; MacDowall, R.~J.; Malaspina, D.; Martin, P.; Page, B.; Pulupa, M.; Revillet, C.; Published by: Journal of Geophysical Research (Space Physics) Published on: apr YEAR: 2022   DOI: 10.1029/2021JA030018 Parker Data Used; Solar wind; magnetic field; search-coil; plasma waves |
2020 |
Plasma Waves in Space: The Importance of Properly Accounting for the Measuring Device Electric fields are generally measured or calculated using two intuitive assumptions: (1) the electric field equals the voltage divided by the antenna length when the antenna is electromagnetically short (2) the antenna responds best to electric field along its length. Both assumptions are often incorrect for electrostatic fields because they scale as the Debye length or as the electron gyroradius, which may be smaller than the antenna length. Taking into account this little-known fact enables us to complete or correct se ... Meyer-Vernet, Nicole; Moncuquet, Michel; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2020 YEAR: 2020   DOI: 10.1029/2019JA027723 electric antennas; parker solar probe; plasma waves; quasi-thermal noise; Solar Probe Plus; Space plasmas |
2018 |
Parametric instability, inverse cascade and the range of solar-wind turbulence In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low-β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfv\ en wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alf ... Published by: Journal of Plasma Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1017/S0022377818000016 astrophysical plasmas; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasma nonlinear phenomena; plasma waves; Solar Probe Plus |
2017 |
Quasi-thermal noise spectroscopy: The art and the practice Quasi-thermal noise spectroscopy is an efficient tool for measuring in situ macroscopic plasma properties in space, using a passive wave receiver at the ports of an electric antenna. This technique was pioneered on spinning spacecraft carrying very long dipole antennas in the interplanetary medium\textemdashlike ISEE-3 and Ulysses\textemdashwhose geometry approached a "theoretician\textquoterights dream." The technique has been extended to other instruments in various types of plasmas on board different spacecraft and wil ... Meyer-Vernet, N.; Issautier, K.; Moncuquet, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024449 electric antennas; magnetospheres; parker solar probe; plasma waves; radio receivers; Solar Probe Plus; Solar wind; velocity distributions |
1