Notice:
|
Found 13 entries in the Bibliography.
Showing entries from 1 through 13
2022 |
Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ... Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.; Published by: \aap Published on: mar YEAR: 2022   DOI: 10.1051/0004-6361/202142381 Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
As a key feature, NASA s Parker Solar Probe (PSP) and ESA-NASA s Solar Orbiter (SO) missions cooperate to trace solar wind and transients from their sources on the Sun to the inner interplanetary space. The goal of this work is to accurately reconstruct the interplanetary Parker spiral and the connection between coronal features observed remotely by the Metis coronagraph on-board SO and those detected in situ by PSP at the time of the first PSP-SO quadrature of January 2021. We use the Reverse in situ and MHD Approach (RIMAP ... Biondo, Ruggero; Bemporad, Alessandro; Pagano, Paolo; Telloni, Daniele; Reale, Fabio; Romoli, Marco; Andretta, Vincenzo; Antonucci, Ester; Da Deppo, Vania; De Leo, Yara; Fineschi, Silvano; Heinzel, Petr; Moses, Daniel; Naletto, Giampiero; Nicolini, Gianalfredo; Spadaro, Daniele; Stangalini, Marco; Teriaca, Luca; Landini, Federico; Sasso, Clementina; Susino, Roberto; Jerse, Giovanna; Uslenghi, Michela; Pancrazzi, Maurizio; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202244535 Parker Data Used; magnetohydrodynamics (MHD); methods: numerical; Solar wind; Sun: heliosphere; Sun: corona; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
2021 |
Energetic particles, such as stellar cosmic rays, produced at a heightened rate by active stars (like the young Sun) may have been important for the origin of life on Earth and other exoplanets. Here, we compare, as a function of stellar rotation rate (Ω), contributions from two distinct populations of energetic particles: stellar cosmic rays accelerated by impulsive flare events and Galactic cosmic rays. We use a 1.5D stellar wind model combined with a spatially 1D cosmic ray transport model. We formulate the evolution of ... Rodgers-Lee, D.; Taylor, A.; Vidotto, A.; Downes, T.; Published by: Monthly Notices of the Royal Astronomical Society Published on: 06/2021 YEAR: 2021   DOI: 10.1093/mnras/stab935 diffusion; methods: numerical; Sun: evolution; stars: magnetic field; cosmic rays; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - High Energy Astrophysical Phenomena |
2019 |
Electron Energy Partition across Interplanetary Shocks. I. Methodology and Data Product Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine; Published by: \apjs Published on: 07/2019 YEAR: 2019   DOI: 10.3847/1538-4365/ab22bd Parker Data Used; methods: numerical; methods: statistical; plasmas; shock waves; Solar wind; Sun: coronal mass ejections: CMEs; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
2018 |
Magnetic Helicity Reversal in the Corona at Small Plasma Beta Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active region now being available, we have access to the magnetic field and current density along coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs ... Bourdin, Philippe; Singh, Nishant; Brandenburg, Axel; Published by: The Astrophysical Journal Published on: 12/2018 YEAR: 2018   DOI: 10.3847/1538-4357/aae97a Astrophysics - Solar and Stellar Astrophysics; dynamo; magnetohydrodynamics: MHD; methods: numerical; parker solar probe; Physics - Plasma Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: magnetic fields |
Deep-space exploration of the inner heliosphere is in an unprecedented golden age, with the recent and forthcoming launches of the Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions, respectively. In order to both predict and understand the prospective observations by PSP and SolO, we perform forward MHD modeling of the 3D inner heliosphere at solar minimum, and synthesize the white-light (WL) emission that would result from Thomson scattering of sunlight from the coronal and heliospheric plasmas. Both solar rotat ... Xiong, Ming; Davies, Jackie; Feng, Xueshang; Li, Bo; Yang, Liping; Xia, Lidong; Harrison, Richard; Hayashi, Keiji; Li, Huichao; Zhou, Yufen; Published by: The Astrophysical Journal Published on: 12/2018 YEAR: 2018   DOI: 10.3847/1538-4357/aae978 magnetohydrodynamics: MHD; methods: numerical; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere |
Parametric Decay and the Origin of the Low-frequency Alfv\ enic Spectrum of the Solar Wind The fast solar wind shows a wide spectrum of transverse magnetic and velocity field perturbations. These perturbations are strongly correlated in the sense of Alfv\ en waves propagating mostly outward, from the Sun to the interplanetary medium. They are likely to be fundamental to the acceleration and the heating of the solar wind. However, the precise origin of the broadband spectrum is unknown to date. Typical periods of chromospheric Alfv\ en waves are limited to a few minutes, and any longer period perturbations shoul ... Réville, Victor; Tenerani, Anna; Velli, Marco; Published by: The Astrophysical Journal Published on: 10/2018 YEAR: 2018   DOI: 10.3847/1538-4357/aadb8f instabilities; magnetohydrodynamics: MHD; methods: numerical; parker solar probe; Solar Probe Plus; Solar wind; waves |
Usmanov, Arcadi; Matthaeus, William; Goldstein, Melvyn; Chhiber, Rohit; Published by: \apj Published on: 09/2018 YEAR: 2018   DOI: 10.3847/1538-4357/aad687 Parker Data Used; magnetohydrodynamics: MHD; methods: numerical; Solar wind; Sun: corona; Sun: rotation; turbulence |
2017 |
Published by: \apj Published on: 07/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa71b9 Parker Data Used; magnetohydrodynamics: MHD; methods: numerical; Solar wind; Sun: heliosphere; turbulence; waves; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Chhiber, R.; Subedi, P.; Usmanov, A.~V.; Matthaeus, W.~H.; Ruffolo, D.; Goldstein, M.~L.; Parashar, T.~N.; Published by: \apjs Published on: 06/2017 YEAR: 2017   DOI: 10.3847/1538-4365/aa74d2 Parker Data Used; cosmic rays; diffusion; methods: numerical; Solar wind; turbulence; Physics - Space Physics |
2016 |
SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, I.e., the \textquotedblleftcollisional age\textquotedblright, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enable ... Chhiber, R; Usmanov, AV; Matthaeus, WH; Goldstein, ML; Published by: The Astrophysical Journal Published on: 04/2016 YEAR: 2016   DOI: 10.3847/0004-637X/821/1/34 magnetohydrodynamics: MHD; methods: numerical; parker solar probe; plasmas; scattering; Solar Probe Plus; Solar wind; turbulence |
Usmanov, Arcadi; Goldstein, Melvyn; Matthaeus, William; Published by: \apj Published on: 03/2016 YEAR: 2016   DOI: 10.3847/0004-637X/820/1/17 Parker Data Used; ISM: magnetic fields; magnetohydrodynamics: MHD; methods: numerical; Solar wind; Sun: heliosphere; turbulence |
2015 |
Resistive Magnetohydrodynamics Simulations of the Ideal Tearing Mode Landi, S.; Del Zanna, L.; Papini, E.; Pucci, F.; Velli, M.; Published by: \apj Published on: 06/2015 YEAR: 2015   DOI: 10.1088/0004-637X/806/1/131 Parker Data Used; magnetohydrodynamics: MHD; magnetic reconnection; methods: numerical; plasmas; Sun: magnetic fields; Astrophysics - Solar and Stellar Astrophysics |
1