Notice:
|
Found 41 entries in the Bibliography.
Showing entries from 1 through 41
2023 |
Magnetic Reconnection as the Driver of the Solar Wind We present EUV solar observations showing evidence for omnipresent jetting activity driven by small-scale magnetic reconnection at the base of the solar corona. We argue that the physical mechanism that heats and drives the solar wind at its source is ubiquitous magnetic reconnection in the form of small-scale jetting activity (a.k.a. jetlets). This jetting activity, like the solar wind and the heating of the coronal plasma, is ubiquitous regardless of the solar cycle phase. Each event arises from small-scale reconnection of ... Raouafi, Nour; Stenborg, G.; Seaton, D.~B.; Wang, H.; Wang, J.; DeForest, C.~E.; Bale, S.~D.; Drake, J.~F.; Uritsky, V.~M.; Karpen, J.~T.; DeVore, C.~R.; Sterling, A.~C.; Horbury, T.~S.; Harra, L.~K.; Bourouaine, S.; Kasper, J.~C.; Kumar, P.; Phan, T.~D.; Velli, M.; Published by: \apj Published on: mar YEAR: 2023   DOI: 10.3847/1538-4357/acaf6c Parker Data Used; Solar corona; Solar wind; magnetic fields; Solar magnetic reconnection; 1483; 1534; 994; 1504; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Deriving Large Coronal Magnetic Loop Parameters Using LOFAR J Burst Observations Large coronal loops around one solar radius in altitude are an important connection between the solar wind and the low solar corona. However, their plasma properties are ill-defined, as standard X-ray and UV techniques are not suited to these low-density environments. Diagnostics from type J solar radio bursts at frequencies above 10 MHz are ideally suited to understand these coronal loops. Despite this, J-bursts are less frequently studied than their type III cousins, in part because the curvature of the coronal loop makes ... Zhang, Jinge; Reid, Hamish; Krupar, Vratislav; Zucca, Pietro; Dabrowski, Bartosz; Krankowski, Andrzej; Published by: \solphys Published on: jan YEAR: 2023   DOI: 10.1007/s11207-022-02096-0 Parker Data Used; Energetic particles; Electrons; magnetic fields; Corona; Radio emission; Radio bursts; Astrophysics - Solar and Stellar Astrophysics |
Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum Launched on 12 Aug. 2018, NASA s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission s primary science goal is to determine the structure and dynamics of the Sun s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a treasure trove of science data that far exceeded quality, significance, and quantity expectations, leading to a significant number ... Raouafi, N.~E.; Matteini, L.; Squire, J.; Badman, S.~T.; Velli, M.; Klein, K.~G.; Chen, C.~H.~K.; Matthaeus, W.~H.; Szabo, A.; Linton, M.; Allen, R.~C.; Szalay, J.~R.; Bruno, R.; Decker, R.~B.; Akhavan-Tafti, M.; Agapitov, O.~V.; Bale, S.~D.; Bandyopadhyay, R.; Battams, K.; Ber\vci\vc, L.; Bourouaine, S.; Bowen, T.~A.; Cattell, C.; Chandran, B.~D.~G.; Chhiber, R.; Cohen, C.~M.~S.; Amicis, R.; Giacalone, J.; Hess, P.; Howard, R.~A.; Horbury, T.~S.; Jagarlamudi, V.~K.; Joyce, C.~J.; Kasper, J.~C.; Kinnison, J.; Laker, R.; Liewer, P.; Malaspina, D.~M.; Mann, I.; McComas, D.~J.; Niembro-Hernandez, T.; Nieves-Chinchilla, T.; Panasenco, O.; y, Pokorn\; Pusack, A.; Pulupa, M.; Perez, J.~C.; Riley, P.; Rouillard, A.~P.; Shi, C.; Stenborg, G.; Tenerani, A.; Verniero, J.~L.; Viall, N.; Vourlidas, A.; Wood, B.~E.; Woodham, L.~D.; Woolley, T.; Published by: ßr Published on: feb YEAR: 2023   DOI: 10.1007/s11214-023-00952-4 Parker Data Used; Sun; Corona; Solar wind; plasma; magnetic fields; coronal mass ejections; parker solar probe; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
At kinetic scales in the solar wind, instabilities transfer energy from particles to fluctuations in the electromagnetic fields while restoring plasma conditions towards thermodynamic equilibrium. We investigate the interplay between background turbulent fluctuations at the small-scale end of the inertial range and kinetic instabilities acting to reduce proton temperature anisotropy. We analyse in situ solar wind observations from the Solar Orbiter mission to develop a measure for variability in the magnetic field direction. ... Opie, Simon; Verscharen, Daniel; Chen, Christopher; Owen, Christopher; Isenberg, Philip; Published by: \aap Published on: apr YEAR: 2023   DOI: 10.1051/0004-6361/202345965 Parker Data Used; instabilities; turbulence; Solar wind; Sun: heliosphere; plasmas; magnetic fields; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
2022 |
Many magnetic field switchbacks were detected by the Parker Solar Probe and their origin remains a puzzle. We did a superposed epoch analysis (SEA) to investigate the plasma characteristics in the vicinity of switchbacks and their radial evolution. SEA is good way to get the statistical average features of certain types of events that have obvious boundaries and different durations. For 55 events ranging from 1 to 30 min, the SEA results show that a small parcel of plasma is piling up in front of the reversed field, and ... Liu, Ruoyan; Liu, Yong; Huang, Jia; Huang, Zhaohui; Klecker, Berndt; Wang, Chi; Published by: Journal of Geophysical Research (Space Physics) Published on: may YEAR: 2022   DOI: 10.1029/2022JA030382 |
The transport of energetic charged particles (e.g., cosmic rays) in turbulent magnetic fields is usually characterized in terms of the diffusion parallel and perpendicular to a large-scale (or mean) magnetic field. The nonlinear guiding center theory has been a prominent perpendicular diffusion theory. A recent version of this theory, based on the random ballistic spreading of magnetic field lines and a backtracking correction (RBD/BC), has shown good agreement with test particle simulations for a two-component magnetic turb ... Snodin, A.~P.; Jitsuk, T.; Ruffolo, D.; Matthaeus, W.~H.; Published by: \apj Published on: jun YEAR: 2022   DOI: 10.3847/1538-4357/ac6e6d Parker Data Used; cosmic rays; magnetic fields; Particle astrophysics; 329; 994; 96; Physics - Plasma Physics; Astrophysics - High Energy Astrophysical Phenomena; Physics - Space Physics |
In the polytropic zone of the solar wind, we have used the generalized polytrope pressure laws to investigate the dissipation of hydromagnetic waves and pressure anisotropy driven fluid instabilities in magnetized viscous plasmas including finite Larmor radius (FLR) corrections and non-ideal magnetohydrodynamic (MHD) effects. The modified dispersion properties have been analyzed in the MHD and Chew-Goldberger-Low (CGL) limits for typical conditions of solar wind and corona. The theoretical results are found to be in good agr ... Prajapati, Ram; Desta, Ephrem; Fok, Mei-Ching; Eritro, Tigistu; Published by: \mnras Published on: jun YEAR: 2022   DOI: 10.1093/mnras/stac1743 plasmas; MHD; waves; instabilities; Solar wind; Solar corona; magnetic fields |
2021 |
Parker solar probe observations of helical structures as boundaries for energetic particles Energetic particle transport in the interplanetary medium is known to be affected by magnetic structures. It has been demonstrated for solar energetic particles in near-Earth orbit studies, and also for the more energetic cosmic rays. In this paper, we show observational evidence that intensity variations of solar energetic particles can be correlated with the occurrence of helical magnetic flux tubes and their boundaries. The analysis is carried out using data from Parker Solar Probe orbit 5, in the period 2020 May 24 to Ju ... Pecora, F.; Servidio, S.; Greco, A.; Matthaeus, W.~H.; McComas, D.~J.; Giacalone, J.; Joyce, C.~J.; Getachew, T.; Cohen, C.~M.~S.; Leske, R.~A.; Wiedenbeck, M.~E.; McNutt, R.~L.; Hill, M.~E.; Mitchell, D.~G.; Christian, E.~R.; Roelof, E.~C.; Schwadron, N.~A.; Bale, S.~D.; Published by: \mnras Published on: sep YEAR: 2021   DOI: 10.1093/mnras/stab2659 magnetic fields; plasmas; Sun: magnetic fields; Sun: solar wind; Sun: particle emission; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used |
Energetic particle evolution during coronal mass ejection passage from 0.3 to 1 AU We provide analysis of a coronal mass ejection (CME) that passed over Parker Solar Probe (PSP) on January 20, 2020 when the spacecraft was at just 0.32 AU. The Integrated Science Investigation of the Sun instrument suite measures energetic particle populations associated with the CME before, during, and after its passage over the spacecraft. We observe a complex evolution of energetic particles, including a brief \raisebox-0.5ex\textasciitilde2 h period where the energetic particle fluxes are enhanced and the nominal orienta ... Joyce, C.~J.; McComas, D.~J.; Schwadron, N.~A.; Vourlidas, A.; Christian, E.~R.; McNutt, R.~L.; Cohen, C.~M.~S.; Leske, R.~A.; Mewaldt, R.~A.; Stone, E.~C.; Mitchell, D.~G.; Hill, M.~E.; Roelof, E.~C.; Allen, R.~C.; Szalay, J.~R.; Rankin, J.~S.; Desai, M.~I.; Giacalone, J.; Matthaeus, W.~H.; Niehof, J.~T.; de Wet, W.; Winslow, R.~M.; Bale, S.~D.; Kasper, J.~C.; Published by: \aap Published on: jul YEAR: 2021   DOI: 10.1051/0004-6361/202039933 Parker Data Used; acceleration of particles; Solar wind; magnetic fields |
The Parker Solar Probe (PSP) mission presents a unique opportunity to study the near-Sun solar wind closer than any previous spacecraft. During its fourth and fifth solar encounters, PSP had the same orbital trajectory, meaning that solar wind was measured at the same latitudes and radial distances. We identify two streams measured at the same heliocentric distance (\raisebox-0.5ex\textasciitilde0.13au) and latitude (\raisebox-0.5ex\textasciitilde-3.5$^○$) across these encounters to reduce spatial evolution effects. By com ... Woolley, Thomas; Matteini, Lorenzo; McManus, Michael; Ber\vci\vc, Laura; Badman, Samuel; Woodham, Lloyd; Horbury, Timothy; Bale, Stuart; Laker, Ronan; Stawarz, Julia; Larson, Davin; Published by: \mnras Published on: aug YEAR: 2021   DOI: 10.1093/mnras/stab2281 Sun: heliosphere; Solar wind; magnetic fields; Parker Data Used |
Time evolution of stream interaction region energetic particle spectra in the inner heliosphere We analyze an energetic proton event associated with a stream interaction region (SIR) that was observed at Parker Solar Probe on day 320 of 2018 when the spacecraft was just 0.34 AU from the Sun. Using the Integrated Science Investigation of the Sun instrument suite, we perform a spectral analysis of the event and show how the observed spectra evolve over the course of the event. We find that the spectra from the first day of the event are much more consistent with local acceleration at a weak compression, while spectra fro ... Joyce, C.; McComas, D.; Schwadron, N.; Christian, E.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Allen, R.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.; Bale, S.; Kasper, J.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039330 acceleration of particles; Solar wind; magnetic fields; Parker Data Used |
Energetic particle behavior in near-Sun magnetic field switchbacks from PSP Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl. Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039800 Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used |
Jagarlamudi, V.; de Wit, Dudok; Froment, C.; Krasnoselskikh, V.; Larosa, A.; Bercic, L.; Agapitov, O.; Halekas, J.; Kretzschmar, M.; Malaspina, D.; Moncuquet, M.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039808 waves; scattering; plasmas; Sun: heliosphere; magnetic fields; Physics - Space Physics; Parker Data Used |
Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. Froment, C.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Fargette, N.; Lavraud, B.; Larosa, A.; Kretzschmar, M.; Jagarlamudi, V.; Velli, M.; Malaspina, D.; Whittlesey, P.; Bale, S.; Case, A.; Goetz, K.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Mozer, F.; Pulupa, M.; Revillet, C.; Stevens, M.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039806 Sun: heliosphere; Solar wind; magnetic fields; magnetic reconnection; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
Switchbacks: statistical properties and deviations from Alfvénicity Context. Parker Solar Probe s first solar encounter has revealed the presence of sudden magnetic field deflections in the slow Alfvénic solar wind. These structures, which are often called switchbacks, are associated with proton velocity enhancements. Larosa, A.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Froment, C.; Jagarlamudi, V.; Velli, M.; Bale, S.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Revillet, C.; Stevens, M.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039442 Solar wind; magnetic fields; waves; magnetohydrodynamics (MHD); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
Discontinuity analysis of the leading switchback transition regions Context. Magnetic switchbacks are magnetic structures characterized as intervals of sudden reversal in the radial component of the pristine solar wind s magnetic field. Switchbacks comprise of magnetic spikes that are preceded and succeeded by switchback transition regions within which the radial magnetic field reverses. Determining switchback generation and evolution mechanisms will further our understanding of the global circulation and transportation of the Sun s open magnetic flux. Akhavan-Tafti, M.; Kasper, J.; Huang, J.; Bale, S.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039508 magnetic reconnection; magnetic fields; Solar wind; methods: data analysis; magnetohydrodynamics (MHD); instabilities; Parker Data Used |
Plasma dynamics in low-electron-beta environments Recent in situ measurements by the MMS and Parker Solar Probe missions bring interest to small-scale plasma dynamics (waves, turbulence, magnetic reconnection) in regions where the electron thermal energy is smaller than the magnetic one. Examples of such regions are the Earth s mangetosheath and the vicinity of the solar corona, and they are also encountered in other astrophysical systems. In this brief review, we consider simple physical models describing plasma dynamics in such low-electron-beta regimes, discuss their con ... Boldyrev, Stanislav; Loureiro, Nuno; Roytershteyn, Vadim; Published by: Frontiers in Astronomy and Space Sciences Published on: 05/2021 YEAR: 2021   DOI: 10.3389/fspas.2021.621040 magnetic fields; Heliosphere; Solar wind; Solar corona; Earth magnetosheath; plasma turbulence; Earth magnetosphere; Collisionless plasma |
A New View of the Solar Interface Region from the Interface Region Imaging Spectrograph (IRIS) The Interface Region Imaging Spectrograph (IRIS) has been obtaining near- and far-ultraviolet images and spectra of the solar atmosphere since July 2013. IRIS is the highest resolution observatory to provide seamless coverage of spectra and images from the photosphere into the low corona. The unique combination of near- and far-ultraviolet spectra and images at sub-arcsecond resolution and high cadence allows the tracing of mass and energy through the critical interface between the surface and the corona or solar wind. IRIS ... De Pontieu, Bart; Polito, Vanessa; Hansteen, Viggo; Testa, Paola; Reeves, Katharine; Antolin, Patrick; Nóbrega-Siverio, Daniel; Kowalski, Adam; Martinez-Sykora, Juan; Carlsson, Mats; McIntosh, Scott; Liu, Wei; Daw, Adrian; Kankelborg, Charles; Published by: Solar Physics Published on: 05/2021 YEAR: 2021   DOI: 10.1007/s11207-021-01826-0 Heating; chromospheric; coronal; chromosphere; models; active; Corona; magnetic fields; chromosphere; Instrumentation and data management; Spectrum; ultraviolet; Astrophysics - Solar and Stellar Astrophysics |
2020 |
An Optimization Principle for Computing Stationary MHD Equilibria with Solar Wind Flow Wiegelmann, Thomas; Neukirch, Thomas; Nickeler, Dieter; Chifu, Iulia; Published by: \solphys Published on: 10/2020 YEAR: 2020   DOI: 10.1007/s11207-020-01719-8 magnetic fields; Corona; models; Magnetohydrodynamics; Velocity fields; Solar wind; Astrophysics - Solar and Stellar Astrophysics |
Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretic ... Florido-Llinas, M.; Nieves-Chinchilla, T.; Linton, M.; Published by: Solar Physics Published on: 09/2020 YEAR: 2020   DOI: 10.1007/s11207-020-01687-z coronal mass ejections; Flux ropes; Kink instability; magnetic fields; parker solar probe; Solar Probe Plus; Twist distribution |
The evolution of inverted magnetic fields through the inner heliosphereABSTRACT Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfv\ enic, HMF inversions in the inner heliosphere, known as \textquoterightswitchbacks\textquoteright, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. ... Macneil, Allan; Owens, Mathew; Wicks, Robert; Lockwood, Mike; Bentley, Sarah; Lang, Matthew; Published by: Monthly Notices of the Royal Astronomical Society Published on: 04/2020 YEAR: 2020   DOI: 10.1093/mnras/staa951 Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: heliosphere |
2019 |
Single-spacecraft Identification of Flux Tubes and Current Sheets in the Solar Wind A novel technique is presented for describing and visualizing the local topology of the magnetic field using single-spacecraft data in the solar wind. The approach merges two established techniques: the Grad-Shafranov (GS) reconstruction method, which provides a plausible regional two-dimensional magnetic field surrounding the spacecraft trajectory, and the Partial Variance of Increments (PVI) technique that identifies coherent magnetic structures, such as current sheets. When applied to one month of Wind magnetic field d ... Pecora, Francesco; Greco, Antonella; Hu, Qiang; Servidio, Sergio; Chasapis, Alexandros; Matthaeus, William; Published by: The Astrophysical Journal Published on: 08/2019 YEAR: 2019   DOI: 10.3847/2041-8213/ab32d9 interplanetary turbulence; magnetic fields; parker solar probe; Solar Probe Plus; Solar wind |
Inherentness of Non-stationarity in Solar Wind Jagarlamudi, Vamsee; de Wit, Thierry; Krasnoselskikh, Vladimir; Maksimovic, Milan; Published by: \apj Published on: 01/2019 YEAR: 2019   DOI: 10.3847/1538-4357/aaef2e |
2018 |
Thermal design verification testing of the solar array cooling system for Parker solar probe Parker Solar Probe (PSP) will explore the inner region of the heliosphere through in situ and remote sensing observations of the magnetic field, plasma, and accelerated particles. PSP will travel closer to the sun (9.86 solar radii [(R Ercol, Carl; Abel, Elisabeth; Holtzman, Allan; Wallis, Eric; Published by: 30th Space Simulation Conference: Mission Success Through Testing of Critical Challenges Published on: Cooling systems; magnetic fields; Magnetoplasma; Orbits; Probes; Remote sensing; Solar cell arrays; Space flight; Thermoelectric equipment; Parker Engineering |
2017 |
A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relax ... Kasper, J.; Klein, K.; Weber, T.; Maksimovic, M.; Zaslavsky, A.; Bale, S.; Maruca, B.; Stevens, M.; Case, A.; Published by: The Astrophysical Journal Published on: 11/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa84b1 acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence |
Charged Particle Diffusion in Isotropic Random Magnetic Fields Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D.; Matthaeus, W.~H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Parashar, T.~N.; Chhiber, R.; Published by: \apj Published on: 03/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa603a Parker Data Used; astroparticle physics; cosmic rays; diffusion; magnetic fields; scattering; turbulence; Physics - Space Physics; Astrophysics - High Energy Astrophysical Phenomena; Astrophysics - Solar and Stellar Astrophysics |
2016 |
Tooprakai, P.; Seripienlert, A.; Ruffolo, D.; Chuychai, P.; Matthaeus, W.~H.; Published by: \apj Published on: 11/2016 YEAR: 2016   DOI: 10.3847/0004-637X/831/2/195 Parker Data Used; magnetic fields; Solar wind; Sun: particle emission; turbulence |
Magnetic Field Line Random Walk in Isotropic Turbulence with Varying Mean Field Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W.~H.; Snodin, A.~P.; Wongpan, P.; Chuychai, P.; Rowlands, G.; Vyas, S.; Published by: \apjs Published on: 08/2016 YEAR: 2016   DOI: 10.3847/0067-0049/225/2/20 |
Local modulation and trapping of energetic particles by coherent magnetic structures Tessein, Jeffrey; Ruffolo, David; Matthaeus, William; Wan, Minping; Published by: \grl Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016GL068045 Parker Data Used; Solar wind; turbulence; Energetic particles; intermittency; magnetic fields |
2015 |
RADIAL EVOLUTION OF A MAGNETIC CLOUD: MESSENGER , STEREO , AND VENUS EXPRESS OBSERVATIONS The Solar Orbiter and Solar Probe Plus missions will provide observations of magnetic clouds closer to the Sun than ever before, and it will be good preparation for these missions to make full use of the most recent in situ data sets from the inner heliosphere\textemdashnamely, those provided by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express\textemdashfor magnetic cloud studies. We present observations of the same magnetic cloud made by MESSENGER at Mercury and later by Solar T ... Good, S.; Forsyth, R.; Raines, J.; Gershman, D.; Slavin, J.; Zurbuchen, T.; Published by: The Astrophysical Journal Published on: 07/2015 YEAR: 2015   DOI: 10.1088/0004-637X/807/2/177 magnetic fields; parker solar probe; Solar Probe Plus; Solar wind; Sun: coronal mass ejections: CMEs; Sun: heliosphere |
Dynamical Field Line Connectivity in Magnetic Turbulence Ruffolo, D.; Matthaeus, W.~H.; Published by: \apj Published on: 06/2015 YEAR: 2015   DOI: 10.1088/0004-637X/806/2/233 |
2014 |
Complexity and Diffusion of Magnetic Flux Surfaces in Anisotropic Turbulence Servidio, S.; Matthaeus, W.~H.; Wan, M.; Ruffolo, D.; Rappazzo, A.~F.; Oughton, S.; Published by: \apj Published on: 04/2014 YEAR: 2014   DOI: 10.1088/0004-637X/785/1/56 Parker Data Used; ISM: magnetic fields; magnetic fields; magnetic reconnection; magnetohydrodynamics: MHD; Solar wind; Sun: magnetic fields |
Proton Kinetic Effects in Vlasov and Solar Wind Turbulence Servidio, S.; Osman, K.~T.; Valentini, F.; Perrone, D.; Califano, F.; Chapman, S.; Matthaeus, W.~H.; Veltri, P.; Published by: \apjl Published on: 02/2014 YEAR: 2014   DOI: 10.1088/2041-8205/781/2/L27 Parker Data Used; magnetic fields; plasmas; Solar wind; turbulence; Physics - Space Physics |
2013 |
Magnetic Field Line Random Walk in Models and Simulations of Reduced Magnetohydrodynamic Turbulence Snodin, A.~P.; Ruffolo, D.; Oughton, S.; Servidio, S.; Matthaeus, W.~H.; Published by: \apj Published on: 12/2013 YEAR: 2013   DOI: 10.1088/0004-637X/779/1/56 Parker Data Used; diffusion; magnetic fields; magnetohydrodynamics: MHD; turbulence |
Squeezing of Particle Distributions by Expanding Magnetic Turbulence and Space Weather Variability Ruffolo, D.; Seripienlert, A.; Tooprakai, P.; Chuychai, P.; Matthaeus, W.~H.; Published by: \apj Published on: 12/2013 YEAR: 2013   DOI: 10.1088/0004-637X/779/1/74 Parker Data Used; galaxies: jets; ISM: jets and outflows; magnetic fields; solar-terrestrial relations; Solar wind; turbulence |
Snodin, A.~P.; Ruffolo, D.; Matthaeus, W.~H.; Published by: \apj Published on: 01/2013 YEAR: 2013   DOI: 10.1088/0004-637X/762/1/66 |
Solar Probe Plus: A mission to touch the sun Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. SPP uses an innovative mission design, significant technology development and a r ... Kinnison, James; Lockwood, Mary; Fox, Nicola; Conde, Richard; Driesman, Andrew; Published by: IEEE Aerospace Conference Proceedings Published on: |
2012 |
Random Ballistic Interpretation of Nonlinear Guiding Center Theory Ruffolo, D.; Pianpanit, T.; Matthaeus, W.~H.; Chuychai, P.; Published by: \apjl Published on: 03/2012 YEAR: 2012   DOI: 10.1088/2041-8205/747/2/L34 |
Solar probe plus mission definition Solar Probe Plus will be the first mission to touch the Sun - To fly into the solar corona to study how the corona is heated and the solar wind is accelerated. Solving these two fundamental mysteries has been a top-priority science goal for over five decades. Thanks to an innovative design, emerging technology developments and completion of a successful Phase A, answers to these critical questions will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the ... Lockwood, Mary; Kinnison, James; Fox, Nicola; Conde, Richard; Driesman, Andrew; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Carbon; Foams; Heating; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Remote sensing; Research laboratories; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering |
2011 |
Solar Probe Plus, mission update Solar Probe Plus (SPP) will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top-priority science goals for over five decades. Thanks to an innovative design, emerging technology developments and a significant risk reducing engineering development program these critical goals will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building th ... Morse, Brian; Kinnison, James; Lockwood, Mary; Reynolds, Edward; Fox, Nicola; Published by: 62nd International Astronautical Congress 2011, IAC 2011 Published on: Carbon; Heating; Instrument testing; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Solar cell arrays; Solar radiation; Solar wind; Temperature; Parker Engineering |
2010 |
Solar probe plus, a historic mission to the sun Solar Probe Plus (SPP) will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top-priority science goals for decades. Thanks to an innovative design, emerging technology developments and a significant risk reducing engineering development program these critical goals will soon be achieved. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the Solar Pr ... Kinnison, James; Morse, Brian; Lockwood, Mary; Reynolds, Edward; Decker, Robert; Published by: 61st International Astronautical Congress 2010, IAC 2010 Published on: Carbon; Interplanetary flight; magnetic fields; Microwave antennas; NASA; Probes; Solar cell arrays; Solar wind; Temperature; Parker Engineering |
1