PSP Bibliography

Found 5 entries in the Bibliography.

Showing entries from 1 through 5


Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretic ...

Florido-Llinas, M.; Nieves-Chinchilla, T.; Linton, M.;

YEAR: 2020     DOI: 10.1007/s11207-020-01687-z

coronal mass ejections; Flux ropes; Kink instability; magnetic fields; parker solar probe; Solar Probe Plus; Twist distribution

The evolution of inverted magnetic fields through the inner heliosphereABSTRACT

Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfv\ enic, HMF inversions in the inner heliosphere, known as \textquoterightswitchbacks\textquoteright, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. ...

Macneil, Allan; Owens, Mathew; Wicks, Robert; Lockwood, Mike; Bentley, Sarah; Lang, Matthew;

YEAR: 2020     DOI: 10.1093/mnras/staa951

Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: heliosphere


Single-spacecraft Identification of Flux Tubes and Current Sheets in the Solar Wind

A novel technique is presented for describing and visualizing the local topology of the magnetic field using single-spacecraft data in the solar wind. The approach merges two established techniques: the Grad-Shafranov (GS) reconstruction method, which provides a plausible regional two-dimensional magnetic field surrounding the spacecraft trajectory, and the Partial Variance of Increments (PVI) technique that identifies coherent magnetic structures, such as current sheets. When applied to one month of Wind magnetic field d ...

Pecora, Francesco; Greco, Antonella; Hu, Qiang; Servidio, Sergio; Chasapis, Alexandros; Matthaeus, William;

YEAR: 2019     DOI: 10.3847/2041-8213/ab32d9

interplanetary turbulence; magnetic fields; parker solar probe; Solar Probe Plus; Solar wind


A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun

The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relax ...

Kasper, J.; Klein, K.; Weber, T.; Maksimovic, M.; Zaslavsky, A.; Bale, S.; Maruca, B.; Stevens, M.; Case, A.;

YEAR: 2017     DOI: 10.3847/1538-4357/aa84b1

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence



The Solar Orbiter and Solar Probe Plus missions will provide observations of magnetic clouds closer to the Sun than ever before, and it will be good preparation for these missions to make full use of the most recent in situ data sets from the inner heliosphere\textemdashnamely, those provided by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express\textemdashfor magnetic cloud studies. We present observations of the same magnetic cloud made by MESSENGER at Mercury and later by Solar T ...

Good, S.; Forsyth, R.; Raines, J.; Gershman, D.; Slavin, J.; Zurbuchen, T.;

YEAR: 2015     DOI: 10.1088/0004-637X/807/2/177

magnetic fields; parker solar probe; Solar Probe Plus; Solar wind; Sun: coronal mass ejections: CMEs; Sun: heliosphere