PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 13 entries in the Bibliography.


Showing entries from 1 through 13


2023

Small-scale solar jet formation and their associated waves and instabilities

Studies on small-scale jets formation, propagation, evolution, and role, such as type I and II spicules, mottles, and fibrils in the lower solar atmosphere s energetic balance, have progressed tremendously thanks to the combination of detailed observations and sophisticated mathematical modelling. This review provides a survey of the current understanding of jets, their formation in the solar lower atmosphere, and their evolution from observational, numerical, and theoretical perspectives. First, we review some results to d ...

Skirvin, Samuel; Verth, Gary; es, Jos\; Shelyag, Sergiy; Sharma, Rahul; an, Francisco; Ballai, Istvan; Scullion, Eamon; Silva, Suzana; Fedun, Viktor;

Published by: Advances in Space Research      Published on: feb

YEAR: 2023     DOI: 10.1016/j.asr.2022.05.033

Solar jets; MHD waves; instabilities; Astrophysics - Solar and Stellar Astrophysics

The effect of variations in the magnetic field direction from turbulence on kinetic-scale instabilities

At kinetic scales in the solar wind, instabilities transfer energy from particles to fluctuations in the electromagnetic fields while restoring plasma conditions towards thermodynamic equilibrium. We investigate the interplay between background turbulent fluctuations at the small-scale end of the inertial range and kinetic instabilities acting to reduce proton temperature anisotropy. We analyse in situ solar wind observations from the Solar Orbiter mission to develop a measure for variability in the magnetic field direction. ...

Opie, Simon; Verscharen, Daniel; Chen, Christopher; Owen, Christopher; Isenberg, Philip;

Published by: \aap      Published on: apr

YEAR: 2023     DOI: 10.1051/0004-6361/202345965

Parker Data Used; instabilities; turbulence; Solar wind; Sun: heliosphere; plasmas; magnetic fields; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

2022

Dissipation of hydromagnetic waves in viscous polytropic zone of solar wind including FLR corrections, Ohmic diffusion and Hall effect

In the polytropic zone of the solar wind, we have used the generalized polytrope pressure laws to investigate the dissipation of hydromagnetic waves and pressure anisotropy driven fluid instabilities in magnetized viscous plasmas including finite Larmor radius (FLR) corrections and non-ideal magnetohydrodynamic (MHD) effects. The modified dispersion properties have been analyzed in the MHD and Chew-Goldberger-Low (CGL) limits for typical conditions of solar wind and corona. The theoretical results are found to be in good agr ...

Prajapati, Ram; Desta, Ephrem; Fok, Mei-Ching; Eritro, Tigistu;

Published by: \mnras      Published on: jun

YEAR: 2022     DOI: 10.1093/mnras/stac1743

plasmas; MHD; waves; instabilities; Solar wind; Solar corona; magnetic fields

2021

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used

Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind

Context. Recent studies of the solar wind sunward of 0.25 AU reveal that it contains quiescent regions, with low-amplitude plasma and magnetic field fluctuations, and a magnetic field direction similar to the Parker spiral. The quiescent regions are thought to have a more direct magnetic connection to the solar corona than other types of solar wind, suggesting that waves or instabilities in the quiescent regions are indicative of the early evolution of the solar wind as it escapes the corona. The quiescent solar wind regions ...

Malaspina, D.; Wilson, L.; Ergun, R.; Bale, S.; Bonnell, J.; Goodrich, K.; Goetz, K.; Harvey, P.; MacDowall, R.; Pulupa, M.; Halekas, J.; Case, A.; Kasper, J.; Larson, D.; Stevens, M.; Whittlesey, P.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202140449

Solar wind; plasmas; instabilities; waves; Parker Data Used

Discontinuity analysis of the leading switchback transition regions

Context. Magnetic switchbacks are magnetic structures characterized as intervals of sudden reversal in the radial component of the pristine solar wind s magnetic field. Switchbacks comprise of magnetic spikes that are preceded and succeeded by switchback transition regions within which the radial magnetic field reverses. Determining switchback generation and evolution mechanisms will further our understanding of the global circulation and transportation of the Sun s open magnetic flux.
Aims: The present study juxtapos ...

Akhavan-Tafti, M.; Kasper, J.; Huang, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039508

magnetic reconnection; magnetic fields; Solar wind; methods: data analysis; magnetohydrodynamics (MHD); instabilities; Parker Data Used

2019

Self-induced Scattering of Strahl Electrons in the Solar Wind

We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability thresho ...

Verscharen, Daniel; Chandran, Benjamin; Jeong, Seong-Yeop; Salem, Chadi; Pulupa, Marc; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 12/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab4c30

Astrophysics - Solar and Stellar Astrophysics; instabilities; parker solar probe; Physics - Geophysics; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence; waves

Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind

Ofman, Leon;

Published by: \solphys      Published on: 07/2019

YEAR: 2019     DOI: 10.1007/s11207-019-1440-8

Solar wind; theory: numerical modeling; instabilities; waves; plasma; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Whistler Fan Instability Driven by Strahl Electrons in the Solar Wind

Vasko, I.~Y.; Krasnoselskikh, V.; Tong, Y.; Bale, S.~D.; Bonnell, J.~W.; Mozer, F.~S.;

Published by: \apjl      Published on: 02/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab01bd

Parker Data Used; conduction; instabilities; plasmas; scattering; Solar wind; waves

2018

Nonlinear Firehose Relaxation and Constant-B Field Fluctuations

Tenerani, Anna; Velli, Marco;

Published by: \apjl      Published on: 11/2018

YEAR: 2018     DOI: 10.3847/2041-8213/aaec01

Parker Data Used; instabilities; plasmas; Solar wind; waves; Physics - Plasma Physics

Parametric Decay and the Origin of the Low-frequency Alfv\ enic Spectrum of the Solar Wind

The fast solar wind shows a wide spectrum of transverse magnetic and velocity field perturbations. These perturbations are strongly correlated in the sense of Alfv\ en waves propagating mostly outward, from the Sun to the interplanetary medium. They are likely to be fundamental to the acceleration and the heating of the solar wind. However, the precise origin of the broadband spectrum is unknown to date. Typical periods of chromospheric Alfv\ en waves are limited to a few minutes, and any longer period perturbations shoul ...

Réville, Victor; Tenerani, Anna; Velli, Marco;

Published by: The Astrophysical Journal      Published on: 10/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aadb8f

instabilities; magnetohydrodynamics: MHD; methods: numerical; parker solar probe; Solar Probe Plus; Solar wind; waves

Oscillations of cometary tails: a vortex shedding phenomenon?

o, Nistic\; Vladimirov, V.; Nakariakov, V.~M.; Battams, K.; Bothmer, V.;

Published by: \aap      Published on: 08/2018

YEAR: 2018     DOI: 10.1051/0004-6361/201732474

Parker Data Used; Solar wind; comets: individual: Encke; ISON; magnetohydrodynamics (MHD); methods: observational; instabilities; waves; Astrophysics - Earth and Planetary Astrophysics

2017

The Parametric Instability of Alfv\ en Waves: Effects of Temperature Anisotropy

Tenerani, Anna; Velli, Marco; Hellinger, Petr;

Published by: \apj      Published on: 12/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa9bef

Parker Data Used; instabilities; plasmas; Sun: heliosphere; waves; Physics - Space Physics



  1