PSP Bibliography


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 7 entries in the Bibliography.

Showing entries from 1 through 7


Upflows in the Upper Solar Atmosphere

Spectroscopic observations at extreme- and far-ultraviolet wavelengths have revealed systematic upflows in the solar transition region and corona. These upflows are best seen in the network structures of the quiet Sun and coronal holes, boundaries of active regions, and dimming regions associated with coronal mass ejections. They have been intensively studied in the past two decades because they are likely to be closely related to the formation of the solar wind and heating of the upper solar atmosphere. We present an overvi ...

Tian, Hui; Harra, Louise; Baker, Deborah; Brooks, David; Xia, Lidong;

Published by: Solar Physics      Published on: 03/2021

YEAR: 2021     DOI: 10.1007/s11207-021-01792-7

Active regions; velocity field; Coronal holes; coronal mass ejections; low coronal signatures; Heating; coronal; Spectral line; broadening; Astrophysics - Solar and Stellar Astrophysics


Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes

Magnetic flux ropes (MFRs) are usually considered to be the magnetic structure that dominates the transport of helicity from the Sun into the heliosphere. They entrain a confined plasma within a helically organized magnetic structure and are able to cause geomagnetic activity. The formation, evolution, and twist distribution of MFRs are issues subject to strong debate. Although different twist profiles have been suggested so far, none of them has been thoroughly explored yet. The aim of this work is to present a theoretic ...

Florido-Llinas, M.; Nieves-Chinchilla, T.; Linton, M.;

Published by: Solar Physics      Published on: 09/2020

YEAR: 2020     DOI: 10.1007/s11207-020-01687-z

coronal mass ejections; Flux ropes; Kink instability; magnetic fields; parker solar probe; Solar Probe Plus; Twist distribution

Improving Predictions of High-Latitude Coronal Mass Ejections Throughout the Heliosphere

Predictions of the impact of coronal mass ejections (CMEs) in the heliosphere mostly rely on cone CME models, whose performances are optimized for locations in the ecliptic plane and at 1 AU (e.g., at Earth). Progresses in the exploration of the inner heliosphere, however, advocate the need to assess their performances at both higher latitudes and smaller heliocentric distances. In this work, we perform 3-D magnetohydrodynamics simulations of artificial cone CMEs using the EUropean Heliospheric FORecasting Information Ass ...

Scolini, C.; e, Chan\; Pomoell, J.; Rodriguez, L.; Poedts, S.;

Published by: Space Weather      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019SW002246

coronal mass ejections; forecasting; Heliosphere; modeling; parker solar probe; Solar Probe Plus


Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses

Janvier, Miho; Winslow, Reka; Good, Simon; Bonhomme, Elise; emoulin, Pascal; Dasso, Sergio; Möstl, Christian; Lugaz, No\; Amerstorfer, Tanja; e, Elie; Boakes, Peter;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA025949

coronal mass ejections; heliospheric physics; data analysis; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics


Large gradual solar energetic particle events

Desai, Mihir; Giacalone, Joe;

Published by: Living Reviews in Solar Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1007/s41116-016-0002-5

Solar activity; Solar energetic particles; coronal mass ejections; Shocks; Particle radiation; space weather


Influence of interplanetary coronal mass ejections on the peak intensity of solar energetic particle events

Lario, D.; Karelitz, A.;

Published by: Journal of Geophysical Research (Space Physics)      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/2014JA019771

Parker Data Used; Solar energetic particles; coronal mass ejections


Solar impulsive energetic electron events

Wang, Linghua;

Published by:       Published on: 01/2009

YEAR: 2009     DOI:

Electron events; coronal mass ejections; Energetic electrons; Energetic particles; solar flares; Radio bursts