PSP Bibliography


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 7 entries in the Bibliography.

Showing entries from 1 through 7


A Revised Understanding of the Structure of the Venusian Magnetotail From a High-Altitude Intercept With a Tail Ray by Parker Solar Probe

One of the major discoveries of NASA s 1979-1991 Pioneer Venus Orbiter is that the nightside ionosphere becomes filamentary at high altitude, forming comet-like tail rays. Pioneer Venus Orbiter could not establish how much farther into the wake of Venus tail rays extend, nor understand how they form. Here we present plasma and fields data from the fourth flyby of Venus by NASA s Parker Solar Probe consistent with an intercept with an ionospheric tail ray. The observations unambiguously demonstrate that Venusian Ionotail Rays ...

Collinson, Glyn; Ramstad, Robin; Frahm, Rudy; Wilson, Lynn; Xu, Shaosui; Whittlesey, Phyllis; Brecht, Stephen; Ledvina, Stephen;

Published by: \grl      Published on: jan

YEAR: 2022     DOI: 10.1029/2021GL096485

Parker Data Used; Venus; Tail Rays; ionosphere; upper hybrid emission; parker solar probe; Atmospheric escape

Solar Wind Model Supported by Parker Solar Probe Observations During Faint Venusian Auroral Emission

The encounter of the Parker Solar Probe (PSP) with Venus during the Venus Gravity Assist 3 on 2020 July 11 provided a unique opportunity to gather in situ solar wind data in the Venusian environment while also being able to observe Venus from ground- based facilities on Earth. The Wang-Sheeley-Arge (WSA) model was used to make accurate predictions of solar wind velocity and interplanetary magnetic field polarity at Earth and STEREO-A, as compared to in situ data at each spacecraft. The same model was then used to predict sol ...

Kovac, Sarah; Gray, Candace; Arge, Nick; Chanover, Nancy; Churchill, Christopher; Szabo, Adam; Hill, Matthew; McAteer, James;

Published by: \apj      Published on: apr

YEAR: 2022     DOI: 10.3847/1538-4357/ac58f4

Parker Data Used; Solar wind; Venus; Aurorae; 1534; 1763; 2192


Depleted Plasma Densities in the Ionosphere of Venus Near Solar Minimum From Parker Solar Probe Observations of Upper Hybrid Resonance Emission

On July 11, 2020, NASA s Parker Solar Probe made its third flyby of Venus. The upper hybrid resonance emission was observed below 1,100 km (a first at Venus), revealing electron densities an order of magnitude lower than at solar maximum. These observations are consistent with a substantial variation in the density and structure of the Venusian ionosphere over the Solar Cycle.

Collinson, Glyn; Ramstad, Robin; Glocer, Alex; Wilson, Lynn; Brosius, Alexandra;

Published by: Geophysical Research Letters      Published on: 05/2021

YEAR: 2021     DOI: 10.1029/2020GL092243

ionosphere; parker solar probe; solar cycle; upper hybrid emission; Venus; waves; Parker Data Used

Non Detection of Lightning During the Second Parker Solar Probe Venus Gravity Assist

The Parker Solar Probe (PSP) spacecraft completed its second Venus gravity assist maneuver (VGA2) on December 26, 2019. For a 20 min interval surrounding closest approach, the PSP/FIELDS Radio Frequency Spectrometer (RFS) was set to "burst mode," recording radio spectra from 1.3 to 19.2 MHz at sub second cadence. We analyze this burst mode data, searching for signatures of radio frequency "sferic" emission from lightning discharges. During the burst mode interval, only four spectra were observed with strong impulsive signals ...

Pulupa, Marc; Bale, Stuart; Curry, Shannon; Farrell, William; Goodrich, Katherine; Goetz, Keith; Harvey, Peter; Malaspina, David; Raouafi, Nour;

Published by: Geophysical Research Letters      Published on: 04/2021

YEAR: 2021     DOI: 10.1029/2020GL091751

Parker Data Used; Venus; lightning; radio; non detection; parker solar probe

Kinetic-Scale Turbulence in the Venusian Magnetosheath

Bowen, T.~A.; Bale, S.~D.; Bandyopadhyay, R.; Bonnell, J.~W.; Case, A.; Chasapis, A.; Chen, C.~H.~K.; Curry, S.; de Wit, Dudok; Goetz, K.; Goodrich, K.; Gruesbeck, J.; Halekas, J.; Harvey, P.~R.; Howes, G.~G.; Kasper, J.~C.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.~J.; Malaspina, D.~M.; Mallet, A.; McManus, M.~D.; Page, B.; Pulupa, M.; Raouafi, N.; Stevens, M.~L.; Whittlesey, P.;

Published by: \grl      Published on: 01/2021

YEAR: 2021     DOI: 10.1029/2020GL090783

Instability; kinetic; plasma; PSP; turbulence; Venus


Plasma Double Layers at the Boundary Between Venus and the Solar Wind

Malaspina, D.~M.; Goodrich, K.; Livi, R.; Halekas, J.; McManus, M.; Curry, S.; Bale, S.~D.; Bonnell, J.~W.; de Wit, Dudok; Goetz, K.; Harvey, P.~R.; MacDowall, R.~J.; Pulupa, M.; Case, A.~W.; Kasper, J.~C.; Korreck, K.~E.; Larson, D.; Stevens, M.~L.; Whittlesey, P.;

Published by: \grl      Published on: 10/2020

YEAR: 2020     DOI: 10.1029/2020GL090115

Parker Data Used; kinetic physics; Venus; bow shock; magnetosheath; double layer; solar wind interaction

Dependence of the Interplanetary Magnetic Field on Heliocentric Distance at 0.3\textendash1.7~AU: A Six-Spacecraft Study

We use magnetometer data taken simultaneously by MESSENGER, VEX, STEREO and ACE to characterize the variation of the interplanetary magnetic field (IMF) with heliocentric distance, rh, for rh≲ 1 AU. Power law fits (a rh b) to the individual IMF components and magnitude indicate that, on average, the IMF is more tightly wound and its strength decreases less rapidly with rh than the Parker spiral prediction. During Solar Cycle 24, temporal changes in b were insignificant, but changes in amplitude, a, were correlated with ...

Hanneson, Cedar; Johnson, Catherine; Mittelholz, Anna; Asad, Manar; Goldblatt, Colin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027139

Heliosphere; IMF; interplanetary magnetic field; Mars; Mercury; parker solar probe; Solar Probe Plus; Venus