PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2022

Parker Solar Probe detects solar radio bursts related with a behind-the-limb active region

Context. The interpretation of solar radio bursts observed by Parker Solar Probe (PSP) in the encounter phase plays a key role in understanding intrinsic properties of the emission mechanism in the solar corona. Lower time-frequency resolution of the PSP receiver can be overcome by simultaneous ground-based observations using more advanced antennas and receivers. \ Aims: In this paper we present such observations for which the active active region 12 765, begetter of type III, J, and U solar bursts, was within sight of groun ...

Stanislavsky, Aleksander; Bubnov, Igor; Koval, Artem; Yerin, Serge;

Published by: \aap      Published on: jan

YEAR: 2022     DOI: 10.1051/0004-6361/202141984

Parker Data Used; Sun: activity; Sun: corona; Sun: radio radiation; methods: observational; space vehicles; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2021

ORFEES - a radio spectrograph for the study of solar radio bursts and space weather applications

Radio bursts are sensitive tracers of non-thermal electron populations in the solar corona. They are produced by electron beams and shock waves propagating through the corona and the heliosphere, and by trapped electron populations in coronal mass ejections (CMEs) and in quiescent active regions. Combining space-borne and ground-based radio spectrographs allows one to track disturbances between the low corona, near or at the sites of particle acceleration, and the spacecraft. Radio observations are, therefore, a significant ...

Hamini, Abdallah; Auxepaules, Gabriel; ee, Lionel; Kenfack, Guy; Kerdraon, Alain; Klein, Karl-Ludwig; Lespagnol, Patrice; Masson, Sophie; Coutouly, Lucile; Fabrice, Christian; Romagnan, Renaud;

Published by: Journal of Space Weather and Space Climate      Published on: oct

YEAR: 2021     DOI: 10.1051/swsc/2021039

Parker Data Used; Astronomical instrumentation; methods and techniques; Sun: activity; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: radio radiation

Simulations of radio-wave anisotropic scattering to interpret type III radio burst data from Solar Orbiter, Parker Solar Probe, STEREO, and Wind

\ Aims: We use multi-spacecraft observations of individual type III radio bursts to calculate the directivity of the radio emission. We compare these data to the results of ray-tracing simulations of the radio-wave propagation and probe the plasma properties of the inner heliosphere. \ Methods: We used ray-tracing simulations of radio-wave propagation with anisotropic scattering on density inhomogeneities to study the directivity of radio emissions. Simultaneous observations of type III radio bursts by four widely separated ...

Musset, S.; Maksimovic, M.; Kontar, E.; Krupar, V.; Chrysaphi, N.; Bonnin, X.; Vecchio, A.; Cecconi, B.; Zaslavsky, A.; Issautier, K.; Bale, S.~D.; Pulupa, M.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140998

Parker Data Used; Sun: radio radiation; scattering; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2

Context. We investigated the source of a type III radio burst storm during encounter 2 of NASA s Parker Solar Probe (PSP) mission.
Aims: It was observed that in encounter 2 of NASA s PSP mission there was a large amount of radio activity and, in particular, a noise storm of frequent, small type III bursts from 31 March to 6 April 2019. Our aim is to investigate the source of these small and frequent bursts.
Methods: In order to do this, we analysed data from the Hinode EUV Imaging Spectrometer, PSP FIELDS, and ...

Harra, L.; Brooks, D.; Bale, S.; Mandrini, C.; Barczynski, K.; Sharma, R.; Badman, S.; Domínguez, Vargas; Pulupa, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039514

Sun: corona; Solar wind; Sun: radio radiation; Sun: abundances; Sun: atmosphere; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Periodicities in an active region correlated with Type III radio bursts observed by Parker Solar Probe

Context. Periodicities have frequently been reported across many wavelengths in the solar corona. Correlated periods of ~5 min, comparable to solar p-modes, are suggestive of coupling between the photosphere and the corona.
Aims: Our study investigates whether there are correlations in the periodic behavior of Type III radio bursts which are indicative of nonthermal electron acceleration processes, and coronal extreme ultraviolet (EUV) emission used to assess heating and cooling in an active region when there are no l ...

Cattell, Cynthia; Glesener, Lindsay; Leiran, Benjamin; Dombeck, John; Goetz, Keith; Oliveros, Juan; Badman, Samuel; Pulupa, Marc; Bale, Stuart;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039510

Sun: radio radiation; Sun: corona; Sun: X-rays; gamma rays; Sun: oscillations; magnetic reconnection; radiation mechanisms: non-thermal; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

2018

Spatial Expansion and Speeds of Type III Electron Beam Sources in the Solar Corona

A component of space weather, electron beams are routinely accelerated in the solar atmosphere and propagate through interplanetary space. Electron beams interact with Langmuir waves resulting in type III radio bursts. They expand along the trajectory and, using kinetic simulations, we explore the expansion as the electrons propagate away from the Sun. Specifically, we investigate the front, peak, and back of the electron beam in space from derived radio brightness temperatures of fundamental type III emission. The front ...

Reid, Hamish; Kontar, Eduard;

Published by: The Astrophysical Journal      Published on: 11/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aae5d4

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: flares; Sun: particle emission; Sun: radio radiation

2017

Langmuir wave electric fields induced by electron beams in the heliosphere

Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar ...

Reid, Hamish; Kontar, Eduard;

Published by: Astronomy \& Astrophysics      Published on: 02/2017

YEAR: 2017     DOI: 10.1051/0004-6361/201629697

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: flares; Sun: heliosphere; Sun: magnetic fields; Sun: particle emission; Sun: radio radiation

2016

An Analysis of Interplanetary Solar Radio Emissions Associated with a Coronal Mass Ejection

Krupar, V.; Eastwood, J.~P.; Kruparova, O.; Santolik, O.; Soucek, J.; c, Magdaleni\; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J.~A.; Oliveros, J.~C.; Bale, S.~D.;

Published by: \apjl      Published on: 06/2016

YEAR: 2016     DOI: 10.3847/2041-8205/823/1/L5

Parker Data Used; solar─terrestrial relations; Sun: coronal mass ejections: CMEs; Sun: radio radiation; Astrophysics - Solar and Stellar Astrophysics



  1