PSP Bibliography



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2020

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

2019

Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24

By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spira ...

Chang, Qing; Xu, Xiaojun; Xu, Qi; Zhong, Jun; Xu, Jiaying; Wang, Jing; Zhang, Tielong;

YEAR: 2019     DOI: 10.3847/1538-4357/ab412a

parker solar probe; planets and satellites: magnetic fields; Solar Probe Plus; Solar wind; Sun: activity; Sun: magnetic fields

Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe \textquoterights First Perihelion Pass

NASA\textquoterights Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun\textquoterights photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. He ...

Riley, Pete; Downs, Cooper; Linker, Jon; Mikic, Zoran; Lionello, Roberto; Caplan, Ronald;

YEAR: 2019     DOI: 10.3847/2041-8213/ab0ec3

Astrophysics - Solar and Stellar Astrophysics; magnetohydrodynamics: MHD; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; Sun: magnetic fields; waves

2018

Magnetic Helicity Reversal in the Corona at Small Plasma Beta

Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active region now being available, we have access to the magnetic field and current density along coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs ...

Bourdin, Philippe; Singh, Nishant; Brandenburg, Axel;

YEAR: 2018     DOI: 10.3847/1538-4357/aae97a

Astrophysics - Solar and Stellar Astrophysics; dynamo; magnetohydrodynamics: MHD; methods: numerical; parker solar probe; Physics - Plasma Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: magnetic fields

Generation of Inverted Heliospheric Magnetic Flux by Coronal Loop Opening and Slow Solar Wind Release

In situ spacecraft observations provide much-needed constraints on theories of solar wind formation and release, particularly the highly variable slow solar wind, which dominates near-Earth space. Previous studies have shown an association between local inversions in the heliospheric magnetic field (HMF) and solar wind released from the vicinity of magnetically closed coronal structures. We here show that in situ properties of inverted HMF are consistent with the same hot coronal source regions as the slow solar wind. We ...

Owens, Mathew; Lockwood, Mike; Barnard, Luke; MacNeil, Allan;

YEAR: 2018     DOI: 10.3847/2041-8213/aaee82

parker solar probe; Solar Probe Plus; Solar wind; Sun: activity; Sun: corona; Sun: magnetic fields

Simulated Encounters of the Parker Solar Probe with a Coronal-hole Jet

Solar coronal jets are small, transient, collimated ejections most easily observed in coronal holes (CHs). The upcoming Parker Solar Probe (PSP) mission provides the first opportunity to encounter CH jets in situ near the Sun and examine their internal structure and dynamics. Using projected mission orbital parameters, we have simulated PSP encounters with a fully three-dimensional magnetohydrodynamic (MHD) model of a CH jet. We find that three internal jet regions, featuring different wave modes and levels of compressibi ...

Roberts, Merrill; Uritsky, Vadim; DeVore, Richard; Karpen, Judith;

YEAR: 2018     DOI: 10.3847/1538-4357/aadb41

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Sun: activity; Sun: corona; Sun: heliosphere; Sun: magnetic fields

2017

The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures

Recent observations have shown that coronal shocks driven by coronal mass ejections can develop and accelerate particles within several solar radii in large solar energetic particle (SEP) events. Motivated by this, we present an SEP acceleration study that including the process in which a fast shock propagates through a streamer-like magnetic field with both closed and open field lines in the low corona region. The acceleration of protons is modeled by numerically solving the Parker transport equation with spatial diffusi ...

Kong, Xiangliang; Guo, Fan; Giacalone, Joe; Li, Hui; Chen, Yao;

YEAR: 2017     DOI: 10.3847/1538-4357/aa97d7

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics; shock waves; Solar Probe Plus; Sun: corona; Sun: coronal mass ejections: CMEs; Sun: magnetic fields; Sun: particle emission

Langmuir wave electric fields induced by electron beams in the heliosphere

Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar ...

Reid, Hamish; Kontar, Eduard;

YEAR: 2017     DOI: 10.1051/0004-6361/201629697

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: flares; Sun: heliosphere; Sun: magnetic fields; Sun: particle emission; Sun: radio radiation



  1