Notice:
|
Found 47 entries in the Bibliography.
Showing entries from 1 through 47
2023 |
Spacecraft radial alignments for investigations of the evolution of solar wind turbulence: A review With the launch of the Parker Solar Probe, BepiColombo, and Solar Orbiter missions in the three-year period 2018 - 2020 , the investigation of the evolution of solar wind turbulence, dynamics, and structures in the inner heliosphere has become more readily feasible, thanks to the increasing availability of orbital configurations suitable for multi-point observations of the Sun and the processes it drives in interplanetary space. Specifically, data analysis, models, and numerical simulations based on multi-spacecraft coordina ... Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: jan YEAR: 2023   DOI: 10.1016/j.jastp.2022.105999 Parker Data Used; magnetohydrodynamics (MHD); plasmas; turbulence; space vehicles; Sun: heliosphere; Solar wind |
At kinetic scales in the solar wind, instabilities transfer energy from particles to fluctuations in the electromagnetic fields while restoring plasma conditions towards thermodynamic equilibrium. We investigate the interplay between background turbulent fluctuations at the small-scale end of the inertial range and kinetic instabilities acting to reduce proton temperature anisotropy. We analyse in situ solar wind observations from the Solar Orbiter mission to develop a measure for variability in the magnetic field direction. ... Opie, Simon; Verscharen, Daniel; Chen, Christopher; Owen, Christopher; Isenberg, Philip; Published by: \aap Published on: apr YEAR: 2023   DOI: 10.1051/0004-6361/202345965 Parker Data Used; instabilities; turbulence; Solar wind; Sun: heliosphere; plasmas; magnetic fields; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Context. Whistler waves are electromagnetic waves produced by electron- driven instabilities, which in turn can reshape the electron distributions via wave-particle interactions. In the solar wind they are one of the main candidates for explaining the scattering of the strahl electron population into the halo at increasing radial distances from the Sun and for subsequently regulating the solar wind heat flux. However, it is unclear what type of instability dominates to drive whistler waves in the solar wind. \ Aims: Our goal ... Froment, C.; Agapitov, O.~V.; Krasnoselskikh, V.; Karbashewski, S.; de Wit, Dudok; Larosa, A.; Colomban, L.; Malaspina, D.; Kretzschmar, M.; Jagarlamudi, V.~K.; Bale, S.~D.; Bonnell, J.~W.; Mozer, F.~S.; Pulupa, M.; Published by: \aap Published on: apr YEAR: 2023   DOI: 10.1051/0004-6361/202245140 Parker Data Used; Sun: heliosphere; Solar wind; waves; plasmas; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2022 |
Context. We investigated the plasma and magnetic field characteristics of the upstream regions of interplanetary coronal mass ejections (ICMEs) and their evolution as function of distance to the Sun in the inner heliosphere. Results are related both to the development of interplanetary shocks, sheath regions, and compressed solar wind plasma ahead of the magnetic ejecta (ME). \ Aims: From a sample of 45 ICMEs observed by Helios 1/2 and the Parker Solar Probe, we aim to identify four main density structures; namely shock, she ... Published by: \aap Published on: sep YEAR: 2022   DOI: 10.1051/0004-6361/202243291 Parker Data Used; Sun: coronal mass ejections (CMEs); Sun: heliosphere; solar-terrestrial relations; Solar wind; Sun: activity; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics |
Switchback deflections beyond the early parker solar probe encounters Switchbacks are Aflv\ enic fluctuations in the solar wind, which exhibit large rotations in the magnetic field direction. Observations from Parker Solar Probe s (PSP s) first two solar encounters have formed the basis for many of the described switchback properties and generation mechanisms. However, this early data may not be representative of the typical near-Sun solar wind, biasing our current understanding of these phenomena. One defining switchback property is the magnetic deflection direction. During the first solar en ... Laker, R.; Horbury, T.~S.; Matteini, L.; Bale, S.~D.; Stawarz, J.~E.; Woodham, L.~D.; Woolley, T.; Published by: \mnras Published on: nov YEAR: 2022   DOI: 10.1093/mnras/stac2477 Parker Data Used; Sun: magnetic fields; Sun: heliosphere; Solar wind; Physics - Space Physics |
An analytical model for dust impact voltage signals and its application to STEREO/WAVES data Context. Dust impacts have been observed using radio and wave instruments onboard spacecraft since the 1980s. Voltage waveforms show typical impulsive signals generated by dust grains. \ Aims: We aim at developing models of how signals are generated to be able to link observed electric signals to the physical properties of the impacting dust. To validate the model, we use the Time Domain Sampler (TDS) subsystem of the STEREO/WAVES instrument which generates high- cadence time series of voltage pulses for each monopole. \ Met ... Babic, Rackovic; Zaslavsky, A.; Issautier, K.; Meyer-Vernet, N.; Onic, D.; Published by: \aap Published on: mar YEAR: 2022   DOI: 10.1051/0004-6361/202142508 Solar wind; Sun: heliosphere; methods: analytical; methods: data analysis; meteorites; meteors; Meteoroids; Interplanetary medium |
An\ alisis cinem\ atico de una eyecci\ on coronal de masa de 10 a 46 radios solares Di Lorenzo, L.; Balmaceda, L.~A.; Cremades, H.; Published by: Boletin de la Asociacion Argentina de Astronomia La Plata Argentina Published on: jul Parker Data Used; Sun: coronal mass ejections (CMEs); Sun: corona; Sun: heliosphere; solar-terrestrial relations |
As a key feature, NASA s Parker Solar Probe (PSP) and ESA-NASA s Solar Orbiter (SO) missions cooperate to trace solar wind and transients from their sources on the Sun to the inner interplanetary space. The goal of this work is to accurately reconstruct the interplanetary Parker spiral and the connection between coronal features observed remotely by the Metis coronagraph on-board SO and those detected in situ by PSP at the time of the first PSP-SO quadrature of January 2021. We use the Reverse in situ and MHD Approach (RIMAP ... Biondo, Ruggero; Bemporad, Alessandro; Pagano, Paolo; Telloni, Daniele; Reale, Fabio; Romoli, Marco; Andretta, Vincenzo; Antonucci, Ester; Da Deppo, Vania; De Leo, Yara; Fineschi, Silvano; Heinzel, Petr; Moses, Daniel; Naletto, Giampiero; Nicolini, Gianalfredo; Spadaro, Daniele; Stangalini, Marco; Teriaca, Luca; Landini, Federico; Sasso, Clementina; Susino, Roberto; Jerse, Giovanna; Uslenghi, Michela; Pancrazzi, Maurizio; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202244535 Parker Data Used; magnetohydrodynamics (MHD); methods: numerical; Solar wind; Sun: heliosphere; Sun: corona; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Tracking of magnetic helicity evolution in the inner heliosphere. A radial alignment study Context. Magnetic helicity is one of the invariants in ideal magnetohydrodynamics, and its spectral evolution has a substantial amount of information to reveal the mechanism that are behind turbulence in space and astrophysical plasmas. \ Aims: The goal of our study is to observationally characterize the magnetic helicity evolution in the inner heliosphere by resolving the helicity transport in a scale-wise fashion in the spectral domain. \ Methods: The evolution of the magnetic helicity spectrum in the inner heliosphere was ... Alberti, T.; Narita, Y.; Hadid, L.~Z.; Heyner, D.; Milillo, A.; Plainaki, C.; Auster, H.; Richter, I.; Published by: \aap Published on: aug YEAR: 2022   DOI: 10.1051/0004-6361/202244314 Parker Data Used; Solar wind; Sun: fundamental parameters; Sun: heliosphere |
2021 |
Mapping solar wind plasma back to its source is often achieved using the two-step ballistic backmapping method. Solar wind observations are mapped through the heliosphere to the edge of a PFSS model, by assuming a constant speed, radial, plasma flow. Tracing field lines through the model gives the source location at 1 R$_\ensuremath\odot$ The heliospheric mapping component hinges upon the argument that two known sources of error, stemming from solar wind acceleration and non-radial flow, effectively cancel. This assumption ... Macneil, Allan; Owens, Mathew; Finley, Adam; Matt, Sean; Published by: \mnras Published on: oct YEAR: 2021   DOI: 10.1093/mnras/stab2965 |
Context. Alfv\ enic fluctuations are ubiquitous features observed in solar wind, especially in the inner heliosphere. However, strong Alfv\ enic fluctuations are recovered in the near-Earth solar wind too, mainly in fast streams, but also in some cases in slow wind intervals, as highlighted in recent studies. \ Aims: The present study focuses on a statistical comparison between different phases of solar cycles 23 and 24 with regard to the Alfv\ enic content of solar wind fluctuations. Particular attention is devoted to the A ... Amicis, R.; Alielden, K.; Perrone, D.; Bruno, R.; Telloni, D.; Raines, J.~M.; Lepri, S.~T.; Zhao, L.; Published by: \aap Published on: oct YEAR: 2021   DOI: 10.1051/0004-6361/202140600 Parker Data Used; plasmas; Sun: heliosphere; Solar wind; turbulence; methods: data analysis; Interplanetary medium |
Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (\ensuremath\Phi$_H$) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the s ... Badman, Samuel; Bale, Stuart; Rouillard, Alexis; Bowen, Trevor; Bonnell, John; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Published by: \aap Published on: jun YEAR: 2021   DOI: 10.1051/0004-6361/202039407 Parker Data Used; Sun: corona; Sun: magnetic fields; Sun: heliosphere; Solar wind; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
One of the key challenges in solar and heliospheric physics is to understand the acceleration of the solar wind. As a super-sonic, super-Alfv\ enic plasma flow, the solar wind carries mass, momentum, energy, and angular momentum from the Sun into interplanetary space. We present a framework based on two-fluid magnetohydrodynamics to estimate the flux of these quantities based on spacecraft data independent of the heliocentric distance of the location of measurement. Applying this method to the Ulysses dataset allows us to st ... Verscharen, Daniel; Bale, Stuart; Velli, Marco; Published by: \mnras Published on: jul YEAR: 2021   DOI: 10.1093/mnras/stab2051 Solar wind; Sun: heliosphere; Magnetohydrodynamics; plasmas; methods: data analysis |
Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ... Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140648 Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations |
Switchback-like structures observed by Solar Orbiter Context. Rapid polarity reversals of the radial heliospheric magnetic field were discovered by Ulysses and they are now frequently observed as a common near-Sun phenomenon by NASA s Parker Solar Probe (PSP). Other solar wind missions, including ESA-NASA Solar Orbiter (SolO), also observe similar phenomena. The nature of these fluctuations is unclear, and the relation between the switchbacks observed near the Sun and similar events observed at 1 AU is unknown. \ Aims: We make a detailed case study of the SolO plasma and m ... Fedorov, A.; Louarn, P.; Owen, C.~J.; Horbury, T.~S.; Prech, L.; Durovcova, T.; Barthe, A.; Rouillard, A.~P.; Kasper, J.~C.; Bale, S.~D.; Bruno, R.; Brien, H.; Evans, V.; Angelini, V.; Larson, D.; Livi, R.; Lavraud, B.; Andre, N.; Genot, V.; Penou, E.; Mele, G.; Fortunato, V.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202141246 |
The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29 Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (\ensuremath\lesssim1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near- Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and a ... Kollhoff, A.; Kouloumvakos, A.; Lario, D.; Dresing, N.; omez-Herrero, R.; ia, Rodr\; Malandraki, O.~E.; Richardson, I.~G.; Posner, A.; Klein, K.; Pacheco, D.; Klassen, A.; Heber, B.; Cohen, C.~M.~S.; Laitinen, T.; Cernuda, I.; Dalla, S.; Lara, Espinosa; Vainio, R.; Köberle, M.; Kühl, R.; Xu, Z.~G.; Berger, L.; Eldrum, S.; Brüdern, M.; Laurenza, M.; Kilpua, E.~J.; Aran, A.; Rouillard, A.~P.; ik, Bu\vc\; Wijsen, N.; Pomoell, J.; Wimmer-Schweingruber, R.~F.; Martin, C.; Böttcher, S.~I.; von Forstner, J.~L.; Terasa, J.; Boden, S.; Kulkarni, S.~R.; Ravanbakhsh, A.; Yedla, M.; Janitzek, N.; iguez-Pacheco, Rodr\; Mateo, Prieto; Prieto, S.; Espada, Parra; Polo, Rodr\; in, Mart\; Carcaboso, F.; Mason, G.~M.; Ho, G.~C.; Allen, R.~C.; Andrews, Bruce; Schlemm, C.~E.; Seifert, H.; Tyagi, K.; Lees, W.~J.; Hayes, J.; Bale, S.~D.; Krupar, V.; Horbury, T.~S.; Angelini, V.; Evans, V.; Brien, H.; Maksimovic, M.; Khotyaintsev, Yu.; Vecchio, A.; Steinvall, K.; Asvestari, E.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140937 Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: coronal mass ejections (CMEs); Sun: flares; Interplanetary medium |
Context. The recent launches of Parker Solar Probe, Solar Orbiter (SO), and BepiColombo, along with several older spacecraft, have provided the opportunity to study the solar wind at multiple latitudes and distances from the Sun simultaneously. \ Aims: We take advantage of this unique spacecraft constellation, along with low solar activity across two solar rotations between May and July 2020, to investigate how the solar wind structure, including the heliospheric current sheet (HCS), varies with latitude. \ Methods: We visua ... Laker, R.; Horbury, T.~S.; Bale, S.~D.; Matteini, L.; Woolley, T.; Woodham, L.~D.; Stawarz, J.~E.; Davies, E.~E.; Eastwood, J.~P.; Owens, M.~J.; Brien, H.; Evans, V.; Angelini, V.; Richter, I.; Heyner, D.; Owen, C.~J.; Louarn, P.; Fedorov, A.; Published by: \aap Published on: aug YEAR: 2021   DOI: 10.1051/0004-6361/202140679 Sun: coronal mass ejections (CMEs); Solar wind; Sun: heliosphere; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used |
The Parker Solar Probe (PSP) mission presents a unique opportunity to study the near-Sun solar wind closer than any previous spacecraft. During its fourth and fifth solar encounters, PSP had the same orbital trajectory, meaning that solar wind was measured at the same latitudes and radial distances. We identify two streams measured at the same heliocentric distance (\raisebox-0.5ex\textasciitilde0.13au) and latitude (\raisebox-0.5ex\textasciitilde-3.5$^○$) across these encounters to reduce spatial evolution effects. By com ... Woolley, Thomas; Matteini, Lorenzo; McManus, Michael; Ber\vci\vc, Laura; Badman, Samuel; Woodham, Lloyd; Horbury, Timothy; Bale, Stuart; Laker, Ronan; Stawarz, Julia; Larson, Davin; Published by: \mnras Published on: aug YEAR: 2021   DOI: 10.1093/mnras/stab2281 Sun: heliosphere; Solar wind; magnetic fields; Parker Data Used |
Dynamics of nanodust in the vicinity of a stellar corona: Effect of plasma corotation Context. In the vicinity of the Sun or other stars, the motion of the coronal and stellar wind plasma must include some amount of corotation, which could affect the dynamics of charged dust particles. In the case of the Sun, this region is now investigated in situ by the Parker Solar Probe. Charged dust particles coming from the vicinity of the Sun can also reach, and possibly be detected by, the Solar Orbiter. \ Aims: We use numerical simulations and theoretical models to study the effect of plasma corotation on the motion ... Published by: \aap Published on: aug YEAR: 2021   DOI: 10.1051/0004-6361/202141048 Sun: heliosphere; Solar wind; acceleration of particles; Parker Data Used; Interplanetary medium; circumstellar matter |
Applicability of Taylor s hypothesis during Parker Solar Probe perihelia We investigate the validity of Taylor s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the fir ... Perez, Jean; Bourouaine, Sofiane; Chen, Christopher; Raouafi, Nour; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039879 Solar wind; Sun: heliosphere; turbulence; magnetohydrodynamics (MHD); plasmas; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used |
Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale heliospheric current sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5-107 solar radii during encounters 1, 4, and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected ... Phan, T.; Lavraud, B.; Halekas, J.; Øieroset, M.; Drake, J.; Eastwood, J.; Shay, M.; Pyakurel, P.; Bale, S.; Larson, D.; Livi, R.; Whittlesey, P.; Rahmati, A.; Pulupa, M.; McManus, M.; Verniero, J.; Bonnell, J.; Schwadron, N.; Stevens, M.; Case, A.; Kasper, J.; MacDowall, R.; Szabo, P.; Koval, A.; Korreck, K.; de Wit, Dudok; Malaspina, D.; Goetz, K.; Harvey, P.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039863 Sun: magnetic fields; Sun: heliosphere; Solar wind; Sun: flares; Parker Data Used |
Jagarlamudi, V.; de Wit, Dudok; Froment, C.; Krasnoselskikh, V.; Larosa, A.; Bercic, L.; Agapitov, O.; Halekas, J.; Kretzschmar, M.; Malaspina, D.; Moncuquet, M.; Bale, S.; Case, A.; Kasper, J.; Korreck, K.; Larson, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039808 waves; scattering; plasmas; Sun: heliosphere; magnetic fields; Physics - Space Physics; Parker Data Used |
Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. Froment, C.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Fargette, N.; Lavraud, B.; Larosa, A.; Kretzschmar, M.; Jagarlamudi, V.; Velli, M.; Malaspina, D.; Whittlesey, P.; Bale, S.; Case, A.; Goetz, K.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Mozer, F.; Pulupa, M.; Revillet, C.; Stevens, M.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039806 Sun: heliosphere; Solar wind; magnetic fields; magnetic reconnection; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
Context. Parker Solar Probe (PSP) is providing an unprecedented view of the Sun s corona as it progressively dips closer into the solar atmosphere with each solar encounter. Each set of observations provides a unique opportunity to test and constrain global models of the solar corona and inner heliosphere and, in turn, use the model results to provide a global context for interpreting such observations. Riley, Pete; Lionello, Roberto; Caplan, Ronald; Downs, Cooper; Linker, Jon; Badman, Samuel; Stevens, Michael; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039815 Sun: corona; Sun: heliosphere; Sun: magnetic fields; Solar wind; Sun: evolution; Interplanetary medium; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used |
Evolving solar wind flow properties of magnetic inversions observed by Helios Macneil, Allan; Owens, Mathew; Wicks, Robert; Lockwood, Mike; Published by: \mnras Published on: 03/2021 YEAR: 2021   DOI: 10.1093/mnras/staa3983 Sun: heliosphere; Sun: magnetic fields; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2020 |
Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ... Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.; Published by: Astronomy \& Astrophysics Published on: 09/2020 YEAR: 2020   DOI: 10.1051/0004-6361/202038245 Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields |
The evolution of inverted magnetic fields through the inner heliosphereABSTRACT Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfv\ enic, HMF inversions in the inner heliosphere, known as \textquoterightswitchbacks\textquoteright, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. ... Macneil, Allan; Owens, Mathew; Wicks, Robert; Lockwood, Mike; Bentley, Sarah; Lang, Matthew; Published by: Monthly Notices of the Royal Astronomical Society Published on: 04/2020 YEAR: 2020   DOI: 10.1093/mnras/staa951 Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: heliosphere |
Alfv\ enic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfv\ enicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfv\ enic. Here we compare three different regimes of solar wind, in terms of Alfv\ enic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfv\ enic slow intervals share some common characteristics. This would suggest a simila ... Perrone, D.; D\textquoterightAmicis, R.; De Marco, R.; Matteini, L.; Stansby, D.; Bruno, R.; Horbury, T.; Published by: Astronomy \& Astrophysics Published on: 01/2020 YEAR: 2020   DOI: 10.1051/0004-6361/201937064 parker solar probe; plasmas; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; turbulence |
2019 |
A strong correlation between speed and proton temperature has been observed, across many years, on hourly averaged measurements in the solar wind. Here, we show that this relationship is also observed at a smaller scale on intervals of a few days, within a single stream. Following the radial evolution of a well-defined stream of coronal-hole plasma, we show that the temperature-speed (T-V) relationship evolves with distance, implying that the T-V relationship at 1 au cannot be used as a proxy for that near the Sun. We sug ... Perrone, Denise; Stansby, D; Horbury, T; Matteini, L; Published by: Monthly Notices of the Royal Astronomical Society Published on: 09/2019 YEAR: 2019   DOI: 10.1093/mnras/stz1877 parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere |
NASA\textquoterights Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun\textquoterights photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. He ... Riley, Pete; Downs, Cooper; Linker, Jon; Mikic, Zoran; Lionello, Roberto; Caplan, Ronald; Published by: The Astrophysical Journal Published on: 04/2019 YEAR: 2019   DOI: 10.3847/2041-8213/ab0ec3 Astrophysics - Solar and Stellar Astrophysics; magnetohydrodynamics: MHD; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; Sun: magnetic fields; waves |
Combined geometrical modelling and white-light mass determination of coronal mass ejections Pluta, Adam; Mrotzek, Niclas; Vourlidas, Angelos; Bothmer, Volker; Savani, Neel; Published by: \aap Published on: 03/2019 YEAR: 2019   DOI: 10.1051/0004-6361/201833829 Parker Data Used; Sun: coronal mass ejections (CMEs); solar-terrestrial relations; Sun: heliosphere; Sun: corona |
2018 |
Deep-space exploration of the inner heliosphere is in an unprecedented golden age, with the recent and forthcoming launches of the Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions, respectively. In order to both predict and understand the prospective observations by PSP and SolO, we perform forward MHD modeling of the 3D inner heliosphere at solar minimum, and synthesize the white-light (WL) emission that would result from Thomson scattering of sunlight from the coronal and heliospheric plasmas. Both solar rotat ... Xiong, Ming; Davies, Jackie; Feng, Xueshang; Li, Bo; Yang, Liping; Xia, Lidong; Harrison, Richard; Hayashi, Keiji; Li, Huichao; Zhou, Yufen; Published by: The Astrophysical Journal Published on: 12/2018 YEAR: 2018   DOI: 10.3847/1538-4357/aae978 magnetohydrodynamics: MHD; methods: numerical; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere |
Simulated Encounters of the Parker Solar Probe with a Coronal-hole Jet Solar coronal jets are small, transient, collimated ejections most easily observed in coronal holes (CHs). The upcoming Parker Solar Probe (PSP) mission provides the first opportunity to encounter CH jets in situ near the Sun and examine their internal structure and dynamics. Using projected mission orbital parameters, we have simulated PSP encounters with a fully three-dimensional magnetohydrodynamic (MHD) model of a CH jet. We find that three internal jet regions, featuring different wave modes and levels of compressibi ... Roberts, Merrill; Uritsky, Vadim; DeVore, Richard; Karpen, Judith; Published by: The Astrophysical Journal Published on: 10/2018 YEAR: 2018   DOI: 10.3847/1538-4357/aadb41 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Sun: activity; Sun: corona; Sun: heliosphere; Sun: magnetic fields |
Opening a Window on ICME-driven GCR Modulation in the Inner Solar System Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the \textquotedblleftstrength\textquo ... Winslow, Reka; Schwadron, Nathan; Lugaz, \; Guo, Jingnan; Joyce, Colin; Jordan, Andrew; Wilson, Jody; Spence, Harlan; Lawrence, David; Wimmer-Schweingruber, Robert; Mays, Leila; Published by: The Astrophysical Journal Published on: 04/2018 YEAR: 2018   DOI: 10.3847/1538-4357/aab098 parker solar probe; Solar Probe Plus; Sun: coronal mass ejections: CMEs; Sun: evolution; Sun: heliosphere |
Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plasma by using the bulk speed as an order parameter to discriminate different regimes. In contrast, here, we study the radial evolution of pure and homogeneous fast streams (i.e. well-defined streams of coronal-hole plasma that maintain their identity during several solar rotatio ... Perrone, Denise; Stansby, D; Horbury, T; Matteini, L; Published by: Monthly Notices of the Royal Astronomical Society Published on: 03/2019 YEAR: 2018   DOI: 10.1093/mnras/sty3348 parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere |
Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimatin ... Graham, G.; Rae, I.; Owen, C.; Walsh, A.; Published by: The Astrophysical Journal Published on: 03/2018 YEAR: 2018   DOI: 10.3847/1538-4357/aaaf1b parker solar probe; plasmas; scattering; Solar Probe Plus; Solar wind; Sun: heliosphere |
Solar-wind predictions for the Parker Solar Probe Orbit Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R☉) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 20 ... Published by: Astronomy \& Astrophysics Published on: 03/2018 YEAR: 2018   DOI: 10.1051/0004-6361/201731831 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere |
Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altit ... Jeffrey, Natasha; Hahn, Michael; Savin, Daniel; Fletcher, Lyndsay; Published by: The Astrophysical Journal Published on: 03/2018 YEAR: 2018   DOI: 10.3847/2041-8213/aab08c Astrophysics - Solar and Stellar Astrophysics; line: profiles; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; Sun: UV radiation; techniques: spectroscopic |
Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based ... Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi; Published by: The Astrophysical Journal Published on: 02/2018 YEAR: 2018   DOI: 10.3847/2041-8213/aaabc1 parker solar probe; shock waves; Solar Probe Plus; Sun: coronal mass ejections: CMEs; Sun: heliosphere |
Diagnosing solar wind origins using in situ measurements in the inner heliosphere Robustly identifying the solar sources of individual packets of solar wind measured in interplanetary space remains an open problem. We set out to see if this problem is easier to tackle using solar wind measurements closer to the Sun than 1 au, where the mixing and dynamical interaction of different solar wind streams is reduced. Using measurements from the Helios mission, we examined how the proton core temperature anisotropy and cross-helicity varied with distance. At 0.3 au there are two clearly separated anisotropic ... Stansby, D; Horbury, T; Matteini, L; Published by: Monthly Notices of the Royal Astronomical Society Published on: 01/2019 YEAR: 2018   DOI: 10.1093/mnras/sty2814 Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun:; Sun: heliosphere |
2017 |
The Parametric Instability of Alfv\ en Waves: Effects of Temperature Anisotropy Tenerani, Anna; Velli, Marco; Hellinger, Petr; Published by: \apj Published on: 12/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa9bef Parker Data Used; instabilities; plasmas; Sun: heliosphere; waves; Physics - Space Physics |
Published by: \apj Published on: 07/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa71b9 Parker Data Used; magnetohydrodynamics: MHD; methods: numerical; Solar wind; Sun: heliosphere; turbulence; waves; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Langmuir wave electric fields induced by electron beams in the heliosphere Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar ... Published by: Astronomy \& Astrophysics Published on: 02/2017 YEAR: 2017   DOI: 10.1051/0004-6361/201629697 Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: flares; Sun: heliosphere; Sun: magnetic fields; Sun: particle emission; Sun: radio radiation |
2016 |
Propinquity of Current and Vortex Structures: Effects on Collisionless Plasma Heating Parashar, Tulasi; Matthaeus, William; Published by: \apj Published on: 11/2016 YEAR: 2016   DOI: 10.3847/0004-637X/832/1/57 Parker Data Used; plasmas; Solar wind; Sun: heliosphere; turbulence; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Usmanov, Arcadi; Goldstein, Melvyn; Matthaeus, William; Published by: \apj Published on: 03/2016 YEAR: 2016   DOI: 10.3847/0004-637X/820/1/17 Parker Data Used; ISM: magnetic fields; magnetohydrodynamics: MHD; methods: numerical; Solar wind; Sun: heliosphere; turbulence |
2015 |
RADIAL EVOLUTION OF A MAGNETIC CLOUD: MESSENGER , STEREO , AND VENUS EXPRESS OBSERVATIONS The Solar Orbiter and Solar Probe Plus missions will provide observations of magnetic clouds closer to the Sun than ever before, and it will be good preparation for these missions to make full use of the most recent in situ data sets from the inner heliosphere\textemdashnamely, those provided by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express\textemdashfor magnetic cloud studies. We present observations of the same magnetic cloud made by MESSENGER at Mercury and later by Solar T ... Good, S.; Forsyth, R.; Raines, J.; Gershman, D.; Slavin, J.; Zurbuchen, T.; Published by: The Astrophysical Journal Published on: 07/2015 YEAR: 2015   DOI: 10.1088/0004-637X/807/2/177 magnetic fields; parker solar probe; Solar Probe Plus; Solar wind; Sun: coronal mass ejections: CMEs; Sun: heliosphere |
2011 |
CORONAL PLUMES IN THE FAST SOLAR WIND The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfv\ en waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of t ... Velli, Marco; Lionello, Roberto; Linker, Jon; c, Zoran; Published by: The Astrophysical Journal Published on: 07/2011 YEAR: 2011   DOI: 10.1088/0004-637X/736/1/32 parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere |
1