PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2018

Opening a Window on ICME-driven GCR Modulation in the Inner Solar System

Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the \textquotedblleftstrength\textquo ...

Winslow, Reka; Schwadron, Nathan; Lugaz, \; Guo, Jingnan; Joyce, Colin; Jordan, Andrew; Wilson, Jody; Spence, Harlan; Lawrence, David; Wimmer-Schweingruber, Robert; Mays, Leila;

Published by: The Astrophysical Journal      Published on: 04/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aab098

parker solar probe; Solar Probe Plus; Sun: coronal mass ejections: CMEs; Sun: evolution; Sun: heliosphere

2015

3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING

Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the result ...

de Patoul, Judith; Foullon, Claire; Riley, Pete;

Published by: The Astrophysical Journal      Published on: 11/2015

YEAR: 2015     DOI: 10.1088/0004-637X/814/1/68

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: evolution; Sun: fundamental parameters; Sun: rotation



  1