PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2021

Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage. Observations and modeling

Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ...

Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.;

Published by: \aap      Published on: dec

YEAR: 2021     DOI: 10.1051/0004-6361/202140648

Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations

Stellar versus Galactic: the intensity of cosmic rays at the evolving Earth and young exoplanets around Sun-like stars

Energetic particles, such as stellar cosmic rays, produced at a heightened rate by active stars (like the young Sun) may have been important for the origin of life on Earth and other exoplanets. Here, we compare, as a function of stellar rotation rate (Ω), contributions from two distinct populations of energetic particles: stellar cosmic rays accelerated by impulsive flare events and Galactic cosmic rays. We use a 1.5D stellar wind model combined with a spatially 1D cosmic ray transport model. We formulate the evolution of ...

Rodgers-Lee, D.; Taylor, A.; Vidotto, A.; Downes, T.;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 06/2021

YEAR: 2021     DOI: 10.1093/mnras/stab935

diffusion; methods: numerical; Sun: evolution; stars: magnetic field; cosmic rays; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - High Energy Astrophysical Phenomena

Using Parker Solar Probe observations during the first four perihelia to constrain global magnetohydrodynamic models

Context. Parker Solar Probe (PSP) is providing an unprecedented view of the Sun s corona as it progressively dips closer into the solar atmosphere with each solar encounter. Each set of observations provides a unique opportunity to test and constrain global models of the solar corona and inner heliosphere and, in turn, use the model results to provide a global context for interpreting such observations.
Aims: In this study, we develop a set of global magnetohydrodynamic (MHD) model solutions of varying degrees of soph ...

Riley, Pete; Lionello, Roberto; Caplan, Ronald; Downs, Cooper; Linker, Jon; Badman, Samuel; Stevens, Michael;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039815

Sun: corona; Sun: heliosphere; Sun: magnetic fields; Solar wind; Sun: evolution; Interplanetary medium; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

2018

Opening a Window on ICME-driven GCR Modulation in the Inner Solar System

Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the \textquotedblleftstrength\textquo ...

Winslow, Reka; Schwadron, Nathan; Lugaz, \; Guo, Jingnan; Joyce, Colin; Jordan, Andrew; Wilson, Jody; Spence, Harlan; Lawrence, David; Wimmer-Schweingruber, Robert; Mays, Leila;

Published by: The Astrophysical Journal      Published on: 04/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aab098

parker solar probe; Solar Probe Plus; Sun: coronal mass ejections: CMEs; Sun: evolution; Sun: heliosphere

2015

3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING

Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the result ...

de Patoul, Judith; Foullon, Claire; Riley, Pete;

Published by: The Astrophysical Journal      Published on: 11/2015

YEAR: 2015     DOI: 10.1088/0004-637X/814/1/68

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: evolution; Sun: fundamental parameters; Sun: rotation



  1