PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 24 entries in the Bibliography.


Showing entries from 1 through 24


2020

Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories

Context. The launch of\ Parker\ Solar\ Probe\ (PSP) in 2018, followed by\ Solar\ Orbiter (SO) in February 2020, has opened a new window in the exploration of\ solar\ magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\ solar\ observations, such as the\ Solar\ Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-w ...

Velli, M.; Harra, L.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P.; Müller, D.; Zouganelis, I.; St Cyr, O.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T.; Howard, R.; Krucker, S.; Maksimovic, M.; Owen, C.; iguez-Pacheco, Rodr\; Romoli, M.; Solanki, S.; Wimmer-Schweingruber, R.; Bale, S.; Kasper, J.; McComas, D.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A.; De Groof, A.; Williams, D.;

Published by: Astronomy \& Astrophysics      Published on: 09/2020

YEAR: 2020     DOI: 10.1051/0004-6361/202038245

Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; solar-terrestrial relations; Sun: atmosphere; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Highly Alfv\ enic slow solar wind at 0.3 au during a solar minimum: Helios insights for Parker Solar Probe and Solar Orbiter

Alfv\ enic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfv\ enicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfv\ enic. Here we compare three different regimes of solar wind, in terms of Alfv\ enic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfv\ enic slow intervals share some common characteristics. This would suggest a simila ...

Perrone, D.; D\textquoterightAmicis, R.; De Marco, R.; Matteini, L.; Stansby, D.; Bruno, R.; Horbury, T.;

Published by: Astronomy \& Astrophysics      Published on: 01/2020

YEAR: 2020     DOI: 10.1051/0004-6361/201937064

parker solar probe; plasmas; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; turbulence

2019

Self-induced Scattering of Strahl Electrons in the Solar Wind

We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability thresho ...

Verscharen, Daniel; Chandran, Benjamin; Jeong, Seong-Yeop; Salem, Chadi; Pulupa, Marc; Bale, Stuart;

Published by: The Astrophysical Journal      Published on: 12/2019

YEAR: 2019     DOI: 10.3847/1538-4357/ab4c30

Astrophysics - Solar and Stellar Astrophysics; instabilities; parker solar probe; Physics - Geophysics; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence; waves

Thermodynamics of pure fast solar wind: radial evolution of the temperature\textendashspeed relationship in the inner heliosphereABSTRACT

A strong correlation between speed and proton temperature has been observed, across many years, on hourly averaged measurements in the solar wind. Here, we show that this relationship is also observed at a smaller scale on intervals of a few days, within a single stream. Following the radial evolution of a well-defined stream of coronal-hole plasma, we show that the temperature-speed (T-V) relationship evolves with distance, implying that the T-V relationship at 1 au cannot be used as a proxy for that near the Sun. We sug ...

Perrone, Denise; Stansby, D; Horbury, T; Matteini, L;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 09/2019

YEAR: 2019     DOI: 10.1093/mnras/stz1877

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe \textquoterights First Perihelion Pass

NASA\textquoterights Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun\textquoterights photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. He ...

Riley, Pete; Downs, Cooper; Linker, Jon; Mikic, Zoran; Lionello, Roberto; Caplan, Ronald;

Published by: The Astrophysical Journal      Published on: 04/2019

YEAR: 2019     DOI: 10.3847/2041-8213/ab0ec3

Astrophysics - Solar and Stellar Astrophysics; magnetohydrodynamics: MHD; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; Sun: magnetic fields; waves

Contextual Predictions for the Parker Solar Probe . I. Critical Surfaces and Regions

The solar corona and young solar wind may be characterized by critical surfaces\textemdashthe sonic, Alfv\ en, and first plasma-β unity surfaces\textemdashthat demarcate regions where the solar wind flow undergoes certain crucial transformations. Global numerical simulations and remote sensing observations offer a natural mode for the study of these surfaces at large scales, thus providing valuable context for the high-resolution in situ measurements expected from the recently launched Parker Solar Probe (PSP). The prese ...

Chhiber, Rohit; Usmanov, Arcadi; Matthaeus, William; Goldstein, Melvyn;

Published by: The Astrophysical Journal Supplement Series      Published on: 03/2019

YEAR: 2019     DOI: 10.3847/1538-4365/ab0652

Astrophysics - Solar and Stellar Astrophysics; magnetohydrodynamics: MHD; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; turbulence

2018

Magnetic Helicity Reversal in the Corona at Small Plasma Beta

Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active region now being available, we have access to the magnetic field and current density along coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs ...

Bourdin, Philippe; Singh, Nishant; Brandenburg, Axel;

Published by: The Astrophysical Journal      Published on: 12/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aae97a

Astrophysics - Solar and Stellar Astrophysics; dynamo; magnetohydrodynamics: MHD; methods: numerical; parker solar probe; Physics - Plasma Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: magnetic fields

Prospective White-light Imaging and In Situ Measurements of Quiescent Large-scale Solar-wind Streams from the Parker Solar Probe and Solar Orbiter

Deep-space exploration of the inner heliosphere is in an unprecedented golden age, with the recent and forthcoming launches of the Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions, respectively. In order to both predict and understand the prospective observations by PSP and SolO, we perform forward MHD modeling of the 3D inner heliosphere at solar minimum, and synthesize the white-light (WL) emission that would result from Thomson scattering of sunlight from the coronal and heliospheric plasmas. Both solar rotat ...

Xiong, Ming; Davies, Jackie; Feng, Xueshang; Li, Bo; Yang, Liping; Xia, Lidong; Harrison, Richard; Hayashi, Keiji; Li, Huichao; Zhou, Yufen;

Published by: The Astrophysical Journal      Published on: 12/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aae978

magnetohydrodynamics: MHD; methods: numerical; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Generation of Inverted Heliospheric Magnetic Flux by Coronal Loop Opening and Slow Solar Wind Release

In situ spacecraft observations provide much-needed constraints on theories of solar wind formation and release, particularly the highly variable slow solar wind, which dominates near-Earth space. Previous studies have shown an association between local inversions in the heliospheric magnetic field (HMF) and solar wind released from the vicinity of magnetically closed coronal structures. We here show that in situ properties of inverted HMF are consistent with the same hot coronal source regions as the slow solar wind. We ...

Owens, Mathew; Lockwood, Mike; Barnard, Luke; MacNeil, Allan;

Published by: The Astrophysical Journal      Published on: 11/2018

YEAR: 2018     DOI: 10.3847/2041-8213/aaee82

parker solar probe; Solar Probe Plus; Solar wind; Sun: activity; Sun: corona; Sun: magnetic fields

Spatial Expansion and Speeds of Type III Electron Beam Sources in the Solar Corona

A component of space weather, electron beams are routinely accelerated in the solar atmosphere and propagate through interplanetary space. Electron beams interact with Langmuir waves resulting in type III radio bursts. They expand along the trajectory and, using kinetic simulations, we explore the expansion as the electrons propagate away from the Sun. Specifically, we investigate the front, peak, and back of the electron beam in space from derived radio brightness temperatures of fundamental type III emission. The front ...

Reid, Hamish; Kontar, Eduard;

Published by: The Astrophysical Journal      Published on: 11/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aae5d4

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: flares; Sun: particle emission; Sun: radio radiation

Simulated Encounters of the Parker Solar Probe with a Coronal-hole Jet

Solar coronal jets are small, transient, collimated ejections most easily observed in coronal holes (CHs). The upcoming Parker Solar Probe (PSP) mission provides the first opportunity to encounter CH jets in situ near the Sun and examine their internal structure and dynamics. Using projected mission orbital parameters, we have simulated PSP encounters with a fully three-dimensional magnetohydrodynamic (MHD) model of a CH jet. We find that three internal jet regions, featuring different wave modes and levels of compressibi ...

Roberts, Merrill; Uritsky, Vadim; DeVore, Richard; Karpen, Judith;

Published by: The Astrophysical Journal      Published on: 10/2018

YEAR: 2018     DOI: 10.3847/1538-4357/aadb41

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Sun: activity; Sun: corona; Sun: heliosphere; Sun: magnetic fields

Short, large-amplitude speed enhancements in the near-Sunfast solar wind

We report the presence of intermittent, short discrete enhancements in plasma speed in the near-Sun high-speed solar wind. Lasting tens of seconds to minutes in spacecraft measurements at 0.3 au, speeds inside these enhancements can reach 1000 km s-1, corresponding to a kinetic energy up to twice that of the bulk high-speed solar wind. These events, which occur around 5 per cent of the time, are Alfv\ enic in nature with large magnetic field deflections and are the same temperature as the surrounding plasma, in ...

Horbury, T; Matteini, L; Stansby, D;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 08/2018

YEAR: 2018     DOI: 10.1093/mnras/sty953

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona

Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations

Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plasma by using the bulk speed as an order parameter to discriminate different regimes. In contrast, here, we study the radial evolution of pure and homogeneous fast streams (i.e. well-defined streams of coronal-hole plasma that maintain their identity during several solar rotatio ...

Perrone, Denise; Stansby, D; Horbury, T; Matteini, L;

Published by: Monthly Notices of the Royal Astronomical Society      Published on: 03/2019

YEAR: 2018     DOI: 10.1093/mnras/sty3348

parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Solar-wind predictions for the Parker Solar Probe Orbit

Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 20 ...

Venzmer, M.; Bothmer, V.;

Published by: Astronomy \& Astrophysics      Published on: 03/2018

YEAR: 2018     DOI: 10.1051/0004-6361/201731831

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere

Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind

In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altit ...

Jeffrey, Natasha; Hahn, Michael; Savin, Daniel; Fletcher, Lyndsay;

Published by: The Astrophysical Journal      Published on: 03/2018

YEAR: 2018     DOI: 10.3847/2041-8213/aab08c

Astrophysics - Solar and Stellar Astrophysics; line: profiles; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere; Sun: UV radiation; techniques: spectroscopic

2017

The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures

Recent observations have shown that coronal shocks driven by coronal mass ejections can develop and accelerate particles within several solar radii in large solar energetic particle (SEP) events. Motivated by this, we present an SEP acceleration study that including the process in which a fast shock propagates through a streamer-like magnetic field with both closed and open field lines in the low corona region. The acceleration of protons is modeled by numerically solving the Parker transport equation with spatial diffusi ...

Kong, Xiangliang; Guo, Fan; Giacalone, Joe; Li, Hui; Chen, Yao;

Published by: The Astrophysical Journal      Published on: 12/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa97d7

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics; shock waves; Solar Probe Plus; Sun: corona; Sun: coronal mass ejections: CMEs; Sun: magnetic fields; Sun: particle emission

A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun

The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relax ...

Kasper, J.; Klein, K.; Weber, T.; Maksimovic, M.; Zaslavsky, A.; Bale, S.; Maruca, B.; Stevens, M.; Case, A.;

Published by: The Astrophysical Journal      Published on: 11/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa84b1

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; magnetic fields; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence

A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images

White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For bo ...

Stenborg, Guillermo; Howard, Russell;

Published by: The Astrophysical Journal      Published on: 04/2017

YEAR: 2017     DOI: 10.3847/1538-4357/aa6a12

methods: data analysis; parker solar probe; Solar Probe Plus; Sun: corona; Sun: coronal mass ejections: CMEs; techniques: image processing

2015

3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING

Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the result ...

de Patoul, Judith; Foullon, Claire; Riley, Pete;

Published by: The Astrophysical Journal      Published on: 11/2015

YEAR: 2015     DOI: 10.1088/0004-637X/814/1/68

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: evolution; Sun: fundamental parameters; Sun: rotation

KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg \& Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1\% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric d ...

Isenberg, Philip; Vasquez, Bernard;

Published by: The Astrophysical Journal      Published on: 08/2015

YEAR: 2015     DOI: 10.1088/0004-637X/808/2/119

parker solar probe; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence; waves

A MODIFIED VERSION OF TAYLOR\textquoterightS HYPOTHESIS FOR SOLAR PROBE PLUS OBSERVATIONS

The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10 R. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor\textquoterights \textquotedblleftfrozen turbulence\textquotedblright hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfv\ en speed, and Taylor\text ...

Klein, Kristopher; Perez, Jean; Verscharen, Daniel; Mallet, Alfred; Chandran, Benjamin;

Published by: The Astrophysical Journal      Published on: 03/2015

YEAR: 2015     DOI: 10.1088/2041-8205/801/1/L18

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; plasmas; Solar Probe Plus; Solar wind; Sun: corona; turbulence

2014

DYNAMICS OF DOUBLE LAYERS, ION ACCELERATION, AND HEAT FLUX SUPPRESSION DURING SOLAR FLARES

Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger ...

Li, T.; Drake, J.; Swisdak, M.;

Published by: The Astrophysical Journal      Published on: 09/2014

YEAR: 2014     DOI: 10.1088/0004-637X/793/1/7

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus; Solar wind; Sun: corona; Sun: flares

INBOUND WAVES IN THE SOLAR CORONA: A DIRECT INDICATOR OF ALFV\ EN SURFACE LOCATION

The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary\textemdashthe Alfv\ en surface\textemdashthat marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfv\ en surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfv\ en speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar co ...

DeForest, C.; Howard, T.; McComas, D.;

Published by: The Astrophysical Journal      Published on: 06/2014

YEAR: 2014     DOI: 10.1088/0004-637X/787/2/124

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: fundamental parameters; techniques: image processing

2011

CORONAL PLUMES IN THE FAST SOLAR WIND

The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfv\ en waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of t ...

Velli, Marco; Lionello, Roberto; Linker, Jon; c, Zoran;

Published by: The Astrophysical Journal      Published on: 07/2011

YEAR: 2011     DOI: 10.1088/0004-637X/736/1/32

parker solar probe; Solar Probe Plus; Solar wind; Sun: corona; Sun: heliosphere



  1