Notice:
|
Found 8 entries in the Bibliography.
Showing entries from 1 through 8
2023 |
Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum Launched on 12 Aug. 2018, NASA s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission s primary science goal is to determine the structure and dynamics of the Sun s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a treasure trove of science data that far exceeded quality, significance, and quantity expectations, leading to a significant number ... Raouafi, N.~E.; Matteini, L.; Squire, J.; Badman, S.~T.; Velli, M.; Klein, K.~G.; Chen, C.~H.~K.; Matthaeus, W.~H.; Szabo, A.; Linton, M.; Allen, R.~C.; Szalay, J.~R.; Bruno, R.; Decker, R.~B.; Akhavan-Tafti, M.; Agapitov, O.~V.; Bale, S.~D.; Bandyopadhyay, R.; Battams, K.; Ber\vci\vc, L.; Bourouaine, S.; Bowen, T.~A.; Cattell, C.; Chandran, B.~D.~G.; Chhiber, R.; Cohen, C.~M.~S.; Amicis, R.; Giacalone, J.; Hess, P.; Howard, R.~A.; Horbury, T.~S.; Jagarlamudi, V.~K.; Joyce, C.~J.; Kasper, J.~C.; Kinnison, J.; Laker, R.; Liewer, P.; Malaspina, D.~M.; Mann, I.; McComas, D.~J.; Niembro-Hernandez, T.; Nieves-Chinchilla, T.; Panasenco, O.; y, Pokorn\; Pusack, A.; Pulupa, M.; Perez, J.~C.; Riley, P.; Rouillard, A.~P.; Shi, C.; Stenborg, G.; Tenerani, A.; Verniero, J.~L.; Viall, N.; Vourlidas, A.; Wood, B.~E.; Woodham, L.~D.; Woolley, T.; Published by: ßr Published on: feb YEAR: 2023   DOI: 10.1007/s11214-023-00952-4 Parker Data Used; Sun; Corona; Solar wind; plasma; magnetic fields; coronal mass ejections; parker solar probe; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
2016 |
Slow Solar Wind: Observations and Modeling While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have be ... Abbo, L.; Ofman, L.; Antiochos, S.; Hansteen, V.; Harra, L.; Ko, Y.-K.; Lapenta, G.; Li, B.; Riley, P.; Strachan, L.; von Steiger, R.; Wang, Y.-M.; Published by: Space Science Reviews Published on: 11/2016 YEAR: 2016   DOI: 10.1007/s11214-016-0264-1 Corona; Coronal streamers; MHD and kinetic models; parker solar probe; Solar Probe Plus; Solar wind; Sun |
2015 |
Solar and heliospheric space missions The paper provides a review of the state of the art and prospects of space research in heliophysics, in which a pivotal role belongs to magnetic measurements in the Sun and heliosphere. New space missions, such as the Interhelioprobe, Solar Orbiter, Solar Probe Plus, etc., will follow the currently operating ones (Hinode, SDO, STEREO, etc.) to observe the Sun from short distances and from out-of-ecliptic positions, as well as to conduct in situ measurements in the vicinity of the Sun and outside the ecliptic. The planned ... Published by: Advances in Space Research Published on: 02/2015 YEAR: 2015   DOI: 10.1016/j.asr.2014.07.034 Heliosphere; Parker Data Used; parker solar probe; Solar and heliospheric space missions; Solar Probe Plus; Sun |
As part of a larger effort led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025 to 2035 launch window. The advanced propulsion system tr ... Hopkins, Randall; Thomas, Herbert; Wiegmann, Bruce; Heaton, Andrew; Johnson, Les; Baysinger, Michael; Beers, Benjamin; Published by: AIAA SPACE 2015 Conference and Exposition Published on: Antennas; Earth (planet); Hall effect devices; Hall thrusters; Heat shielding; Interplanetary flight; NASA; Small satellites; Solar equipment; Solar radiation; Sun; Tetherlines; Trajectories; Parker Engineering |
2014 |
Predicting the solar probe plus solar array output Predicting the output of the Solar Probe Plus (SPP) solar array presents unique challenges as the array operates at very high temperatures and irradiances, and has a water-cooled substrate. A further complication arises because, close to perihelion, each string operates at an irradiance and temperature different from the other strings. This paper provides the methodology and results for computing the output of the array over a range of irradiances from zero to seventy suns, temperatures from -80°C to 164°C, and angle ... Gaddy, Edward; Butler, Michael; Lockwood, Mary; Martin, Gayle; Roufberg, Lew; Vigil, Cristina; Boca, Andreea; Richards, Benjamin; Stall, Rick; Schurman, Matthew; Published by: 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 Published on: Aerospace engineering; Cell engineering; Photoelectrochemical cells; Photovoltaic cells; Probes; Satellites; Solar cell arrays; Sun; Parker Engineering |
2013 |
UV-exposure experiments for the Solar Probe Plus array NASA s Solar Probe Plus (SPP) will travel closer to the Sun than any previous spacecraft. During its 7-year, 24-orbit mission, SPP will make scientific measurements of the solar corona, reaching minimum perihelion at ∼9.5 solar radii (R Boca, Andreea; Blumenfeld, Philip; Crist, Kevin; De Zetter, Karen; Richards, Benjamin; Sarver, Charles; Sharps, Paul; Stall, Richard; Stan, Mark; Published by: Conference Record of the IEEE Photovoltaic Specialists Conference Published on: NASA; Photovoltaic cells; Probes; Radiation effects; Solar cell arrays; Sun; Temperature distribution; Parker Engineering |
2012 |
High-irradiance high-temperature vacuum testing of the Solar Probe Plus array design The Solar Probe Plus (SPP) spacecraft will fly further into the Sun s corona than any previous mission, reaching a minimum perihelion at 9.5 solar radii from the center of the Sun. The solar arrays powering the spacecraft will operate under unusually high irradiances and temperatures. The array design, material choices, and necessary test facilities for SPP are therefore quite different from those used on traditional space panels. This paper gives an overview of the high-irradiance high-temperature vacuum (HIHT-Vac) reliabil ... Boca, Andreea; Blumenfeld, Philip; Crist, Kevin; De Zetter, Karen; Mitchell, Richard; Richards, Benjamin; Sarver, Charles; Sharps, Paul; Stan, Mark; Tourino, Cory; Published by: Conference Record of the IEEE Photovoltaic Specialists Conference Published on: Photovoltaic cells; Probes; Solar cell arrays; Sun; Parker Engineering |
Modeling and simulation of the solar probe plus spacewire virtual data bus The Solar Probe Plus (SPP) mission will study the Sun s corona, one of the last unexplored regions of the solar system. The spacecraft will carry a complement of instruments closer to the Sun than any spacecraft has ever ventured. The mission concept calls for a minimum perihelion of 9.5 solar radii over an extended campaign of in-situ and simultaneous remote observations. To meet the power, mass, fault management and electromagnetic interference constraints of the mission, the SPP spacecraft architecture uses SpaceWire as t ... Published by: Proceedings of the International Astronautical Congress, IAC Published on: Avionics; Buses; Codes (symbols); Data handling; Digital storage; Discrete event simulation; Electromagnetic pulse; Internet protocols; Memory architecture; Network architecture; Probes; Refining; Response time (computer systems); Spacecraft; Sun; System buses; Parker Engineering |
1