Notice:
|
Found 18 entries in the Bibliography.
Showing entries from 1 through 18
2019 |
Solar Radiation Disturbance Torque Reduction for the Parker Solar Probe Observatory This paper examines the methodology used for reducing solar pressure disturbance torques for the Parker Solar Probe (PSP) Observatory by minimizing the offset between spacecraft s Center of Gravity (CG) and Center of Pressure (CP). The force due to solar radiation pressures encountered by the PSP spacecraft, particularly at the 9.86 solar-radii (Rs) closest approach point in the orbit, are of a sufficient magnitude to produce significant disturbance torques. Inside of 0.25 AU, the Observatory is required to keep its Thermal ... Ruiz, Felipe; Kelly, Daniel; Napolillo, David; Published by: IEEE Aerospace Conference Proceedings Published on: Ballast (railroad track); Flight control systems; Observatories; Optical properties; Orbits; Probes; Propellants; Solar radiation; Spacecraft; Torque; Well testing; Parker Engineering |
2018 |
Spacecraft level vibration testing exposes the as-built spacecraft, in its flight configuration, to the low frequency (<100 Hz) dynamic environment experienced during launch with the primary objective of verifying structural integrity and system performance. This test requires as flight-like of a configuration as possible and is therefore typically one of the last tests performed in the spacecraft verification program. At this level of integration (spacecraft), failures pose a much greater risk to the program than at lower l ... Conkey, Shelly; Schaefer, Ed; Persons, David; Published by: 30th Space Simulation Conference: Mission Success Through Testing of Critical Challenges Published on: Ability testing; Environmental testing; Software testing; Spacecraft; Vibration analysis; Vibration control; Parker Engineering |
The Use of the Expanded FMEA in Spacecraft Fault Management The NASA/APL Parker Solar Probe (PSP) mission will revolutionize our understanding of the Sun by swooping to within 4 million miles of the Sun s surface. This mission targets the fundamental processes and dynamics that characterize the Sun s corona and outwardly expanding solar wind and will be the first mission to fly into the low solar corona (i.e., the Sun s atmosphere) revealing both how the corona is heated and how the solar wind is accelerated. PSP has many engineering challenges presented by the intense environment in ... Jones, Melissa; Fretz, Kristin; Kubota, Sanae; Smith, Clayton; Published by: Proceedings - Annual Reliability and Maintainability Symposium Published on: Failure modes; Fault detection; Human resource management; Maintainability; NASA; Risk analysis; Risk assessment; Safety factor; Solar radiation; Solar wind; Spacecraft; Parker Engineering |
The techniques for stray light analysis, optimization and testing are described for two space telescopes that observe the solar corona: the Solar Orbiter Heliospheric Imager (SoloHI) that will fly on the ESA Solar Orbiter (SolO), and the Wide Field Imager for Solar Probe (WISPR) that will fly on the NASA Parker Solar Probe (PSP) mission. Imaging the solar corona is challenging, because the corona is six orders of magnitude dimmer than the Sun surface at the limb, and the coronal brightness continues to decrease to ten orders ... Thernisien, Arnaud; Howard, Russell; Korendyke, Clarence; Carter, Tim; Chua, Damien; Plunkett, Simon; Published by: Proceedings of SPIE - The International Society for Optical Engineering Published on: Diffraction; Heat shielding; Image analysis; Millimeter waves; NASA; Optical coatings; Orbits; Probes; Ray tracing; Solar cell arrays; Solar radiation; Space flight; Space telescopes; Spacecraft; Parker Engineering |
2017 |
Spacecraft power distribution unit test system re-use: Advantages, pitfalls and challenges The Solar Probe Plus (SPP) mission, part of NASA s Living With a Star program, is set to launch in July of 2018 on a trip to travel through the Sun s corona. The first component that will be integrated to the spacecraft is the Power Distribution Unit (PDU). The SPP PDU was based on the PDU design utilized for the Van Allen Probes (formerly Radiation Belt Storm Probes) mission, but with some very significant differences. Due to the fact that the SPP spacecraft is a much more complex vehicle, it requires nearly twice as many p ... Published by: IEEE Aerospace Conference Proceedings Published on: Commercial off-the-shelf; NASA; Probes; Radiation belts; Spacecraft; Telemetering equipment; Testing; Parker Engineering |
Agile methodology for spacecraft ground software development: A cultural shift In the Space Exploration Sector (SES) at Johns Hopkins University Applied Physics Laboratory (JHU/APL) the development of Mission Operations Ground Software (GSW) to support NASA and Department of Defense spacecraft missions has traditionally followed the incremental build methodology. As part of our continuous process improvement effort, the Agile methodology is being introduced as an alternative approach to software development. To meet the needs of sponsor requirements and satisfy our quality management processes a tailor ... Wortman, Kristin; Duncan, Brian; Melin, Eric; Published by: IEEE Aerospace Conference Proceedings Published on: Computer software; NASA; Quality management; Space flight; Spacecraft; Parker Engineering |
2016 |
The NASA’s Solar Probe Plus spacecraft must endure extreme heat loads while passing near the Sun. Due to its high incident heatload and temperature, the spacecraft Thermal Protection System (TPS) must be simulated using a custom thermal simulator during spacecraft thermal vacuum testing. As part of the development of the TPS thermal simulator, subscale testing was performed. The design, testing, results and lessons learned are described in this paper. Especially useful are the design aspects needed to achieve the high ... Congdon, Elizabeth; Abel, Elisabeth; Heisler, Elizabeth; Published by: 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference Published on: Aerodynamics; Heat shielding; NASA; Probes; Simulators; Spacecraft; Thermal insulating materials; Parker Engineering |
Solar Probe Plus (SPP) Wrap Around Automated Testing The Solar Probe Plus (SPP) mission, under NASA s Living with a Star program, will fly a spacecraft (S/C) through the sun s outer corona. The mission will gather data on the processes of coronal heating, solar wind acceleration, and production, evolution and transport of solar energetic particles. The spacecraft has an Electrical Power System or EPS that has to undergo testing before delivery to the spacecraft for integration and testing. The specific unit to be delivered is called the Power System Electronic box or PSE. The ... Published by: AUTOTESTCON (Proceedings) Published on: Automation; Digital signal processors; Electric batteries; Electric power systems; Engines; Environmental testing; NASA; Probes; signal processing; Solar cell arrays; Space flight; Spacecraft; Spacecraft power supplies; Telemetering equipment; Testbeds; Wings; Parker Engineering |
Solar Probe Plus Spacecraft Flight Software requirements verification test framework Comprehensive Spacecraft Flight Software requirements verification is essential to the success of deep space missions. NASA s Solar Probe Plus (SPP) Spacecraft Flight Software and requirement verification activities are being implemented by Johns Hopkins University Applied Physics Laboratory (JHU/APL) located in Laurel, MD. JHU/APL s software development process for a critical mission requires an independent verification of all Spacecraft Flight Software requirements. The complexity of SPP s Spacecraft Flight Software and th ... Jacobs, Samantha; Wortman, Kristin; Published by: IEEE Aerospace Conference Proceedings Published on: Flight control systems; Formal verification; Interplanetary flight; NASA; Probes; Program debugging; Requirements engineering; Software design; Spacecraft; Parker Engineering |
2014 |
Solar probe plus solar array cooling system T-Vac test The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is designing and building the Solar Probe Plus (SPP) spacecraft and managing the project for NASA s Living with a Star (LWS) program. The main objectives of the SPP mission are to understand the Sun s coronal magnetic field, the causes of solar corona and solar wind heating and acceleration, and the mechanisms of energetic particles acceleration and transportation. To achieve these objectives, the SPP spacecraft needs to make in-situ measurements in ... Published by: 28th Space Simulation Conference - Extreme Environments: Pushing the Boundaries Published on: Cooling systems; Interplanetary flight; NASA; Probes; Software testing; Solar energy; Spacecraft; Thermoelectric equipment; Waste heat; Parker Engineering |
2013 |
Solar Probe Plus mission overview Solar Probe Plus will be the first mission to pass into the solar corona to study how the corona is heated and the solar wind is accelerated. Solving these two fundamental mysteries has been a top-priority science goal for over five decades. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is managing the mission for NASA s Living with a Star Program, including the development, build, and operation of the spacecraft. SPP will launch in 2018, performing 24 orbits of the Sun over a 7-year duration. ... Reynolds, Edward; Driesman, Andrew; Kinnison, James; Lockwood, Mary; Hill, Patrick; Published by: AIAA Guidance, Navigation, and Control (GNC) Conference Published on: Carbon; Foams; Heat shielding; Interplanetary flight; NASA; Probes; Solar cell arrays; Solar energy; Spacecraft; Temperature; Thermal insulating materials; Parker Engineering |
Modeling the near-sun environment for the Solar Probe Plus Guidance and Control system The Solar Probe Plus (SPP) mission is the culmination of decades of studies on spacecraft designed to explore the inner region of the heliosphere. The mission is being implemented by the Johns Hopkins University Applied Physics Laboratory for a 2018 launch. Building on the flight experiences of the Helios (NASA/FRG) and MESSENGER (NASA/JHUAPL) spacecraft and several remote studies, SPP will be the closest operating spacecraft to the Sun, even surpassing the 2017 planned launch of the Solar Orbiter (ESA/NASA) spacecraft. At a ... Wirzburger, John; Vaughan, Robin; Shapiro, Hongxing; Published by: AIAA Guidance, Navigation, and Control (GNC) Conference Published on: dynamics; Flight control systems; NASA; Probes; Space flight; Spacecraft; Parker Engineering |
Avoiding the burn: Maintaining a Sun-safe attitude for the Solar Probe Plus spacecraft The Solar Probe Plus (SPP) mission plans to send a spacecraft to explore the inner region of the heliosphere and is currently working towards launch in 2018. The SPP spacecraft will make in-situ measurements and remote observations over a series of 24 nearly-ecliptic solar orbits with perihelion decreasing from 35 solar radii (Rs) to a minimum of 9.86 Rs over a period of 7 years. Proper orientation of the spacecraft and solar arrays relative to the Sun is essential for a successful mission. A large shield must be kept betwee ... Vaughan, Robin; Kubota, Sanae; Shapiro, Hongxing; Kagan, Mike; Vesel, John; Published by: AIAA Guidance, Navigation, and Control (GNC) Conference Published on: Attitude control; Closed loop control systems; Failure analysis; Probes; Solar cell arrays; Spacecraft; Parker Engineering |
2012 |
A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was ... Lipatov, Alexander; Sittler, Edward; Hartle, Richard; Cooper, John; Published by: Planetary and Space Science Published on: 03/2012 YEAR: 2012   DOI: 10.1016/j.pss.2011.12.008 Alfv\ en waves; Induced magnetospheres; Magnetic barrier; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Spacecraft; Whistlers |
Active solar array thermal control system for the solar probe plus spacecraft The Solar Probe Plus (SPP) spacecraft will orbit the Sun closer than any other previous probe. As dictated by the current mission design, the spacecraft will achieve many perihelia as close as 9.5 RS from the Sun. During those passes, it will encounter a solar flux of ~500 suns, or 70 W/cm2. This flux is more than 50 times larger than the solar heating seen by any previous spacecraft. During the entire mission, the spacecraft and science instruments will be protected by a Thermal Protection System (TPS), and elect ... Ercol, Carl; Guyette, Greg; Cho, Wei-Lin; Published by: 42nd International Conference on Environmental Systems 2012, ICES 2012 Published on: Cooling; Cooling systems; Flight control systems; Probes; Solar cell arrays; Spacecraft; Thermoelectric equipment; Waste heat; Parker Engineering |
A review of the Solar Probe Plus dust protection approach The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before, which has required the development of new thermal and micrometeoroid protection technologies. During the 24 solar orbits of the mission, the spacecraft will encounter a thermal environment that is 50 times more severe than any previous spacecraft. It will also travel through a dust environment previously unexplored, and be subject to particle hypervelocity impacts (HVI) at velocities much larger than anything previously e ... Mehoke, Douglas; Brown, Robert; Swaminathan, P.K.; Kerley, Gerald; Carrasco, Cesar; Iyer, Kaushik; Published by: IEEE Aerospace Conference Proceedings Published on: Dust; Earth (planet); Interplanetary flight; Particle size analysis; Probes; Space debris; Spacecraft; Parker Engineering |
Modeling and simulation of the solar probe plus spacewire virtual data bus The Solar Probe Plus (SPP) mission will study the Sun s corona, one of the last unexplored regions of the solar system. The spacecraft will carry a complement of instruments closer to the Sun than any spacecraft has ever ventured. The mission concept calls for a minimum perihelion of 9.5 solar radii over an extended campaign of in-situ and simultaneous remote observations. To meet the power, mass, fault management and electromagnetic interference constraints of the mission, the SPP spacecraft architecture uses SpaceWire as t ... Published by: Proceedings of the International Astronautical Congress, IAC Published on: Avionics; Buses; Codes (symbols); Data handling; Digital storage; Discrete event simulation; Electromagnetic pulse; Internet protocols; Memory architecture; Network architecture; Probes; Refining; Response time (computer systems); Spacecraft; Sun; System buses; Parker Engineering |
2010 |
An active cooling system for the solar probe power system The Solar Probe Plus (SPP) spacecraft will orbit the Sun closer than any other previous probe. As dictated by the current mission design, the spacecraft will achieve many perihelia as close as 9.5 R Lockwood, Mary; Ercol, Carl; Cho, Wei-Lin; Hartman, David; Adamson, Gary; Published by: 40th International Conference on Environmental Systems, ICES 2010 Published on: Cooling; Cooling systems; Orbits; Probes; Spacecraft; Testing; Thermoelectric equipment; Waste heat; Parker Engineering |
1